
COMPUT.ER CORPORATlO.- Olf AMRC

K KL
!ATACOMPUTER PROJECT

SE41-ANNUAL TECHNICAL REPORT

March 13, 1974 to June'30, 1974

Contract No. I'1fA903. 74-C-0225

I AREA Order No. 2687

Submitted to:

ftom A4vtnced, Research ft 4ects Agency

A,&j too Virginia 22209

,1 it

__V

p4,

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

I

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

March 13, 1974 to June 30, 1974 2

Arm 'VI n

This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was

monitored by the U.S. Army Research Office, Defense Supply

Service---Washington under Contract No. MDA903-74-C-0225. The

views and conclusions contained in this document are those of

the authors and should not be interpreted as necessarily

representing the official policies, either expressed or

implied, of the Defense Advanced Research Projects Agency

or the U.S. Government.

f' £

Abstract

The datacomputer system is being designed as a large-scale

data storage utility to be accessed from remote computers on

the Arpanet and, potentially, on other networks. The

development is phased, with each successive release of the

system offering increased capabilities to users. During

the present reporting period, the second major release of

the system became operational. This release, while still

primitive in many respects, is beginning to provide experience

with actual applications and user programs.

Ai

Aceso For~

1, 7T S G" &I:
DTIC TAB I2

J If Ic -t n--

Ava , -e

' II , , , , , I I

Table of Contents

Pager

Abstract.. i

1. Overview.. 1

1.1 Review of Basic Concepts 1

1.2 Status of Project................................ 3
2. Software Implementation 7

2.1 Request Handler.................................. 7
2.2 Services.. 9

3. Network Services...................................... 10
3.1 User Programs.................................... 10

3.2 User Statistics.................................. 11

Appendix: Working Paper No. 9, "Datacomputer Version

0/10 User Manual", June 1, 1974................13

Figures

1. Logical View of Datacomputer 2

2. Hardware Overview of System 4

3. Hardware Block Diagram -CCA Installation 5

'40 A

1. Overview

1.1 Review of Basic Concepts

The goal of the project continues to be the development of

a shared, large-scale data storage utility, to serve the

needs of the Arpanet community.

The system under development will make it possible to store

within the network such files as the ETAC Weather File or

the NMRO Seismic Data File, which are measured in hundreds

of billions of bits, and to make arbitrarily selected parts

of these files available within seconds to sites requesting

the information. The system is also intended to be used as

a centralized facility for archiving data, for sharing data

among the various network hosts, and for providing inexpensive

on line storage to sites which need to supplement their local

capability.

* Logically, the system can be viewed as a closed box which
is shared by multiple external processors, and which is

accessed in a standard notation, "datalanguage" (see Fig. 1).

The processors can request the system to store information,

change information already stored in the system, and retrieve

stored information. To cause the datacomputer to take action,

the external processor sends a "request" expressed in data-

language to the datacomputer, which then performs the desired

data operations.

From the user s point of view the datacomputer is a remotely-

located utility, accessed by telecommunications, It would be

impractical to use such a utility if, whenever the user wanted

to access or change any portion of his file, the entire file

had to be transmitted to him. Accordingly, data management

functions (information retrieval, file maintenance, backup,

p-1-

Figure 1. Logical View of Datacomputer

-2-

access security, creation of direct and inverse files, main--

tenance of file directories, etc.) are performed by the data-

computer system itself. The user sends a "request", which

causes the proper functions to be executed at the datacomputer

without requiring entire files to be shipped back and forth.

The hardware of the system is shown in overview in Fig. 2 and

in greater detail in Fig. 3.

The program for the system processor handles the interactions

with the network hosts and is designed to control up to three

levels of storage: primary (core), secondary (disk', and

tertiary mass storage. Currently, the CCA facility is operating

with primary and secondary storage only, with the addition of

tertiary storage planned for 1975. Installation of a tertiary

storage module will leave datalanguage unchanged, and will

therefore be imperceptible to users of the system (except

insofar as it affects performance and the total storage capacity

available for data).

In addition to using the dedicated equipment at CCA, it is

planned that datacomputer service will also make use of

hardware resources located at NASA/Ames, using CCA software.

The two sites will provide mutual backup for one another,

thereby guarding against accidental loss of data and providing

for satisfactory uptime of the overall service.

1.2 Status of Project

During this reporting period, Version 0/10 of the datacomputer

system was completed. This is the second major version of the

system to offer datacomputer services on the Arpanet. Version

0/10 has replaced Version 0/9.7, which was an "intermediate"

release. Version 0/10 handles non-ASCII and variable-length

data. It has file-level access regulation. (See chapter 2 and

Appendix for details.)

-3-

A

PRIMARY
STORAGE

R 1 M M E M O R Y B U S

ARPNAETYTM E IR

Figue 2.HrwROvESSRiwo STmAG

LSS L

ME10 ME MEW- - E1 MEW.. . '

MEMORY MEMORY MEMORY MEMORY MEMORY

CALCOMPMEMORRY

DUALNNEORAAGER

Figure~~~~PI .HaDaeBokDigaSKC Isalto
(EquipmentI indse uln Spandfo95

PACKCONROLRA-5-3CET

The project continues on an increasing scale to interact with

actual and potential datacomputer users. New user programs

have given us more operational experience with the system.

Much attention is being paid to the seismic community, the

weather community, and other users to determine their data-

computer requirements and adjust the implementation priorities

accordingly.

Currently only disk storage is available to the system. A

Calcomp Dual 230 disk was installed during the fourth quarter

of 1973. A second Calcomp Dual 230 disk will be added later

in 1974. This will bring the total CCA storage capacity to

about 4 billion bits. Plans call for the addition of large

tertiary storage in 1975.

-6-

2. Software Implementation

During this reporting period, Version 0/10 replaced Version

0/9.7 as the system offering service of the Arpanet. The new

features of 0/10 are summarized in this section. (See

Appendix, "Datacomputer Version 0/10 User Manual" for details.)

Specifications and implementation of Version 0/11 were begun.

2.1 Request Handler

Data Description. The datalanguage user must supply descrip-

tions for all data, whether it is data being transmitted to

or from the datacomputer (port description) or data being

stored at the datacomputer (file description). The data may

be tree-structured. The simple data types handled by Version

0/10 are 7-bit ASCII, 8-bit ASCII, and uninterpreted bytes

or byte strings (with a user-specified byte size less than or

equal to 36). Variable-length data may have either a one-

byte preceding count, a one-byte delimiter, or, if it is in

a port, a trailing "punctuation"° character (i.e., end-of-

record, end-of-block, or end-of-file marker).

The previous restriction that a file or port must be a list

has been lifted. Also lifted is the size restriction that

inner containers (i.e., containers inside of files or ports)

must be less than 2560 characters.

The data description facilities in Version 0/11 will be the

same as in Version 0/10.

Data Operations and Access Methods. In Version 0/10 the user

may store files, retrieve files, replace files, and append to

files. The user may also retrieve subsets of a file specified

by boolean expressions on multiple variables. In retrieving

or storing data, the datacomputer can also reformat it.

4 -7- ___

Unlike earlier versions, 0/10 allows members of inner level

Klists to be used in boolean expressions. (This is sometimes

called a keyword feature; it allows an attribute -- or

container, in datalanguage terms -- that occurs several times

in one container with different values to be used in a

retrieval specification.) Members of inner level lists may

also be inverted. However, only EQ can be evaluated using

the inversion; evaluation of NE still requires sequential

search of the data.

Version 0/11 will introduce a rudimentary updating capability.

Replacement of uninverted fixed-length containers will be

possible. This includes fixed-length containers that are

inside of variable-length containers.

In addition to specifying a set of containers by content, in

0/11 the user will be able to specify a set of containers by

position In a list, called the index number of the list

member. The set specification may be used either for retrieval

or for updating.

In order to allow efficient retrieval of variable-length

containers, the auxiliary structure, called a Container

Address Table (CAT), will be implemented. The CAT provides

a mapping from index number or internal record number to 4
logical address. It can be used both for indexed and

inverted retrievals.

Data Privacy. Version 0/10 has directory-level access

regulation, that is, regulation at the file level and higher.

The classes of users are defined by knowledge of passwords,

by host, and/or by socket number. The privileges to be

granted or denied are read, write, append, login, and control

of privileges.

-8-

_ - -"-- .-in- .-...--- I

2.2 Services

Version 0/c0 supports multiple volumes. This allows the

datacomputer to use both of the CCA 3330-type spindles for

storing datacomputer files. These disks are treated as
"special disks", not as part of the normal Tenex page space.

A utility routine that dumps datacomputer files to magnetic

tape was added. It can run as a background job without

interfering with datacomputer services.

i

I'

-.9-

3. Network Services

3.1 User Programs K
The datacomputer is accessed by user programs which run on

other hosts on the Arpanet and send datalanguage requests to

the datacomputer. In order to gain operational experience

with the datacomputer and the problems associated with using

it, and in order to facilitate usage of the datacomputer

system, CCA has written a number of user programs.

During the previous reporting period, two such programs were

written: SMART, which generates datalanguage for users at

terminals, and FORPAC, which provides an interface between

Fortran prorrams and the datacomputer. Based on our experience

with these two programs, a set of standard subroutines (DCSUBR)

needed for communication with the datacomputer were specified

and implemented. There are routines to set up network

connections, send datalanguage, send data, read data, and the

like. Written in Macro-10, DCSUBR serves as a model for

similar programs to be written for other machines.

One of the user programs to incorporate DCSUBR is RDC (Run

Datacomputer). RDC provides convenient terminal access to

the datacomputer from a Tenex host. Datalanguage is trans-

mitted from either a teletype or from a local Tenex file,

and datacomputer responses are displayed.

At the user's request, RDC will set up a secondary network

connection as a data path to or from the datacomputer. This

allows for transfer of non-ASCII data (not accepted over the

datalanguage port) and it results in more efficient data

transfers over the network. Unlike other user programs, RDC

does not generate dat'language; rather it gives a person a

I way to submit his own datalanguage. (The only exceptions

I -10

are the datalanguage CONNECT and DISCONNECT statements.)

RDC has been useful for debugging and for setting up new data

bases.

A second program to utilize DCSUBR is DFILE. DFILE, which

Sruns on any Tenex host, allows local users to archive their

files on the datacomputer. The user, from his terminal, can

associate attribute-value pairs with his file, and, later,

retrieve the propor files based on boolean combinations of

these pairs. DFILE may be used advantageously for files

whose usage is not limited to a single host or for files

which are public and meant to be distributed. The attribute-

value pairs give the DFILE user a way of browsing through the

DFILE database to :ind out what files are available.

I
3.2 User Statistics

The following chart indicates the number of times each

network site has connected to the datacomputer in the present

reporting period. During the period March through May, both

Versions 0/Q.7 and 0/10 were available over the Arpanet. The

figures for this period indicate the changeover from one

version to the next.

LJ I

,I1

Total CCA MIT--DMS Harvard Other
January 419 160 64 150 45
February 1323 143 1005 118 57

March

0/9.7 1002 323 457 149 73

0/19 15 15

1017 338

April

0/9.7 956 284 381 174 117
0/10 391 350 20 0 21

1347 634 401 174 138

May
0/9.7 789 46 517 200 26
0/10 1142 712 166 191 53

1931 758 703 391 79

June
0/10 995 544 160 168 123

Number of CONNECTS to CCA

Datacomputer System - 1974

I;

A- -12-

L

APPENDIX

Working Paper No. 9
'Datacomputer Version 0/10 User Manuall'

June 1, 1974

Datacomputer Version 0/10
User Mania

Iaaopte rjc
Workin Pape No.'

acompter Pr oct A
W7 hoog qae
Jun rde1, 1974 huets023

Datacomputer Version 0/10

User Manual

t

Computer Corporation of America

A

1 June 19714

I- o
L -- i I i i

Table of Contents

1. Introduction to the Dataconiputer 3

2. Containers

Containers 4
Outermost Containers*
The Directory 6
Pathnames 7
Creating Nodes 7
Creating Containers. 8

3. Directory Commands13
OPEN...... 13
MODE.o* * * 14.
CLOSE o.. 1

DELETE. 14................

LIST. 15

14. Security and Passwords17
Introductory Concepts . . * 17
Gaining Access to Nodes: LIN.17
Privileges18
Privilege Block 0 19
User Identification Field s20
Privilege Set Specifications 21
User Classes * * 0 * 023
Creating Privilege Blocks: CREATEP24
Deleting Privilege Blocks: DELETEP 27
Example . 28

5. Assignment and FOR-Loops. 31
Assignment Involving Outermost Containers . 31
The Matching Rules31
Padding and Truncation o32
Examples 0 0 . . . 0 . . . 0 .33
Selection of LIST Members36
Retrievals Using Inner LIST Members 37
Retrievals Using Inverted Containers39
Assignment With FOR o 40

6. Using the Datacomputer o o. 0 0 0 0 4 3

Page 2

Appendices

A: Summary of Datalanguage Syntax. 52

B; Reserved Words 0 65

C: Inversion: Technical Considerations66

D: Network t,orction with the Datacomputer . .69

E: Implem,,.ntation Restrictions 71

F: Differeoces setween 0/9 and 0/1075

I -

Pag e 3

Chapter 1: Introduction to the Fatacomputer

I ntrndurtign

The datacomputer is a shared large-scale data utility
system designed to serve the computers on the ARPA network.
It may be thought of as a "black box" that performs data
storage and retrieval functions in response to commands
phrased in a standard notation, called datalanguage.

This document describes the currently-running version
of the datacomputer software, and includes information about
how a user program can access the system, transmit
datalanguage, process the datacomputer's responses, and
transmit and receive data over the network.

The datacomputer in its full implementation will
provide an on-line storage capacity of one trillion hits and
an extensive set of services to user prorrams. (1) The
present version is a preliminary version, providing a
limited amount of storage and a restricted set of user
functions. Subsequent versions will progressively enlarge
the range of services and the amount of storage available
for users.

(1) See Datacomputer Project 1Working Paper No. 8, Further
Dtalnu Dei Conct, December 1973.

Page 4

Chapter 2: Containers

The n .Lainer is a basic concept in datalanguage. A
container is an Imaginary box which, like a FORTRAN
variable, may contain data; a container may also enclose
other containers. For example, some Information about
people could be represented as:

PEOPLE
PPERSON

NAME ADDRESS SOCSECNO NAME

FIRST LAST STREET CITY STATE FIRST

L4

Figure 2-1. A container structure

Here PEOPLE, PERSON, NAME, and ADDRESS are containers
enclosing other containers; FIRST, LAST, STREET, CITY,
STATE, and SOCSECNO are containers that enclose only data.

The description of a container has several parts. it
includes the container's ident, type, and size, and perhaps
some additional attributes. The container's ident, or

simple name, is a string of 100 or fewer letters, digits or
the special character t, by which datalanguage requests
refer to the container. The first character of an ldPnt

must be a letter or the character %. Certain reserved words
may not be used as container idents; these are listed in
Appendix B of this document.

Some sample idents are:

- - _.._, I i i ,- ' 1

Chapter 2: Containers Page 5

AVERYLONGIDENTABCDEFGHIJKLMNOPQRSTUVWXYZ
PEOPLE
WEATHEROSTATIONS
%CCA

Containers are of four tvnes, depending on their
contents.

A container that is a jLIT contains some number of
other containers. The LIST-members may be containers of any
data type, but they must all have the same description.
PEOPLE (above) is an example of a LIST.

A container that Is a STRUCT, or STRUCTURE, contains
some number of other containers, which need not have
Identical descriptions.(1) The descriptions of all the
containers that are enclosed by the STRUCT form part of the
description of the STRUCT itself; and on every occurrence of
the STRUCT every one of its sub-containers must appear in
the same order. ADDRESS is an example of a STRUCT.

A container of type Y contains one byte of data. A
container that is a or STRING contains a string of
bytes.(2) FIRST is an example of a STR. The user can
specify the byte size of BYTEs and STRs and can Indicate an
interpretation of 7- or 8-bit ASCII or uninterpreted (See
below).

A LIST or STR has a sizC associated with it. The size
may be fixed or variable. The size of a STR is the number
of characters In It, while the size of a LIST Is the number
of elements in the LIST.

Ouftmost CLainprg

A container that Is not contained hy any other
container is called an o rontaiaJni; outermost
containers are different in several respects from other
containers.

An outermost container in datalanguage has a f,
which is either FILE, PORT, or TEMPORARY PORT (which may be
abbreviated TEMP PORT). A FILE contains data kept in the
datacomputer. When a FILE is created (see below),
datacomputer space is allocated for it. A PORT describes
data that is transmitted to or from the datacomputer. A
TEMP PORT is a PORT whose description is not permanently

(1) STRUCT and STRUCTURE are synonyms in datalanguage.
Hereafter, STRUCT will normally be used.

(2) STR and STRING are synonyms in datalanguage. Hereafter,t STR will normally be used.

Chapter 2: Containers Page 6

stored, unlike the descriptions of other containers. TEMP

PORTs vanish at the end of the session In which they were

created.

The ident of an outermost container, whether it is a

FILE or a PORT, is unlike other Idents, in that it is

entered in the datacomputer's deo. The directory is

conceptually a tree; the entries In It are called J.odes. A
node may have one or more subordinate nodes, unless it
represents a container, in which case it cannot. A portion
of a hypothetical directory is diagrammed below; it may be

read as indicating that the nodes F and G are suhordinate to

DATA, which in turn is subordinate to CCA. Only the

bottom-most nodes in this tree, F and G, may represent

containers, and they represent outermost containers.II
CCA

DATA

!F G

Figure 2-2. A portion of the directory.

Only a bottom-most node of the directory may be a container

ident; only an outermost container has its ident entered in

the directory.

Normally, the first thing a user does after attaching

to the datacomputer is log in to a directory node. For most

purposes, he only sees his login node and the part of the

directory that is subordinate to his login node. (The LOCIN

request is discussed In detail in Chapter 4.)

_ J II. . -.. . -- I-. " "

Chapter 2: Containers Page 7

PathnaMps

Pathnames are used to reference nodes in the directory
tree by describing a path through it. They have the general
hierarchical form

NODE1.NODE2... NODEn

where NODE2 is a node directly suhordinate to NOnFl.

There are several varieties of pathnames. The two
classes of directory objects referenced by pathnames are
closed nodes (including all nodes that are not outermost
containers and all outermost containers that are not OPEN)
and OPEN outermost containers. There are three areas In
which names can be found: the TOP, LOGIN, and OPEN contexts.
Thus there are six possible pathname types, only five of
which are reasonable. (A closed node in the OPEN context R

isn't.)
Closed nodes can be referenced either by a complete

pathname (started with the reserved word %TOP), which causes
the name search to be anchored at the top of the directory
tree, or a LOGIN pathname, which anchors the search at the
current LOGIN node. Either pathname may contain passwords.
(Passwords are discussed In Chapter 4.)

OPEN nodes may be referenced by a simple complete
pathname or a simple LOGIN pathname, neither one of which
can contain passwords, or by an OPEN node simple name. An
OPEN node simple name is the name of the outermost
conta i ner.

A node in the directory is created with a CRFATF

request. Such a request has the form

CREATE <pathname> ;

Only one node may be created by a single CREATE request, and
a higher-level node must always be created before one
subordinate to it. The reserved words listed In Appendix B
may not be used as directory node names.

As an example, let us create the outermost container F,
a LIST of 4-character strings; the container's ident will be
entered in the directory as indicated in Figure 2-2. We
assume that nothing is presently in the directory, so we
must start by creating the topmost node.

,7 T
4
, - I - -. _ - -"",- "" _ - __ n _ . ___ --- _ _ _

Chapter 2: Containers Pare 8

CREATE CCA;
CREATE CCA.DATA;
CREATE CCA.DATA.F FILE LIST

FOG STR (4) ;

Now that CCA and CCA.DATA have been created, we could
create CCA.DATA.G with only one CREATE request; I.e.

CREATE CCA.DATA.G PORT LIST etc.

Outermost containers are created by a more complicated
form of the CREATE request. The CREATE statement must tell
the datacomputer all about the container, for example, Its
ident, function, size, and data type are included. An
outermost container and all Its subcontainers must be
created at once, with one CREATE request.

The CREATE request causes the description to hp stored.
It al->, causes space to be allocated if the container Is a
FILE.

The full BNF in Appendix A indicates succinctly the
precise syntax of the CREATE statement. It is worth lo,
at a few examples before looking at all the !tails oF
descriptions. A LIST of STRings:

CREATE ALPHA FILE LIST SUBCONTAINFDSTRING STR (44z) ;

Here the size of the outermost LIST is omitted, so the
datacomputer will calculate a default size.

A LIST of STRUCTs, each of which contains three I
strings:

CREATE BALLTEAM FILE LIST (25)
PLAYER STRUCT

NAME STR(20)
POSITION STR(2)
UNIFORMNUMBER STR(2)

END;

The datacomputer will allocate enough space for the fileBALLTEAM to hold 25 copies of the STRUCT named PLAYER. Note

that END is required to terminate the description of the
STRUCT.

The example diagrammed on page 4:

CREATE PEOPLE FILE LIST
PERSON STRUCT a

, °

Chapter 2: Containers Page 9

NAME STRUCT
FIRST STR(15)
LAST STR(15)

END
ADDRESS STRUCT

STREET STR(15)
CITY STR(15)
STATE STR (15)

END
SOCSECNO STR(10)

END;

The elementary data types are BYTE and STR. Containers
of these types contain data, not other containers.

STRings and LISTs must have a size. For STRings, the
size is the number of bytes in the STRing. For LISTs the
size is the number of LIST members (e.r. the number of
PERSONs in PEOPLE above.) The three forms for indicating the
size are:

(n) -- a fixed size of n
(m,n) -- a minimum size of m and a maximum of n
(,n) -- a minimun; dimension of 0 and a maximum of n

where m and n are positive integers.
For an outermost LIST or STRing, no size need be

specified. The default minimum Is 0, and the default
maximum is based on what will fit in the default space
allocation.

The datacomputer needs a way to find the end of the
data in variable-sized LISTs and STRings. The three options
are a preceding count, a trailing character, and punctuation
(i.e. a device-dependent marker). A one-byte preceding
count is indicated with the keyword parameter

,C=1

Version 0/10 cannot handle counts larger than one byte.
Thus, if there is a count, then the maximum dimension must
be small enough to fit into a one-byte count. (Byte size is
discussed further below.) The value of the count does not
include the count byte Itself.

The syntax to indicate that there is a one-byte
delimiter is

,Dn

or

- -~ - w

Chapter 2: Containers Page 10

,D=ta'

where n is a decimal number and a is any ASCII number,
letter or special character.

The datacomputer considers punctuation to he different
from delimiters. Punctuation over the network is a special
character (specifically EOR, EOB, or EOF) inserted in the
data but not considered part of the data. This is Indicated
by

,P-EOR
P=EOB

and
P=EOF

A fixed-size container (including a STRLICT) may have a
P, D or C parameter, but no container (fixed or variable)
may have more than one of these.

A datacomputer FILE can be punctuated, but none of its
sucontainers can be. The FILE punctuation defaults to EOF.
Variable-length subcontainers must have either a C (count)
or D (delimited) parameter.

If a variable-sized PORT does not have a P, D, or C
parameter, then it defaults to P=EOF. Variable-sized
subcontainers of a PORT default to P=EOR.

Punctuation is hierarchical. A container that Is
punctuated with EOR cannot contain one that is punctuated
with EOB or EOF. A container that is punctuated with EOB
cannot contain one with EOF. If higher punctuation is found
in a data stream where the datacomputer is looking for lower
punctuation (e.g., an EOB .'ere an EOR is expected), the
higher punctuation implies the lower.

(1) Note that the default punctuation for PORTs is different
from what it was in Version 0/9. Consider the description

CREATE P PORT LIST
R STRUCT

A STR (1)
B STR (1)

END;

FOR VERSION 0/9 EVERY R MUST END WITH AN EOR. In Version
0/10, since R is fixed-size, no EOR's are expected, and an
error message is output If an EOR or EOB is found. If R's
end with EOR, then

,P=EOR

should be added to the description of R.

Chapter 2: Containers Page 11

The Interpretation of a STR Is one of ASCII (i.e.
7-bit ASCII), ASCII8, or BYTE, as in the following three
examples:

A STR ASCII (5)
P STR ASCII8 (1,10), C-1
WALDO STR BYTE (73)

The default byte size for BYTE is 36 bits. BYTE is optional
if the byte size is given explicitly with the keyword
paramter

,B=n

where n is a positive integer less than or equal to 36. The
,B=n option may not be used for ASCII STRings. If no byte
size or interpretation is given, then the STR Is 7-hit
ASCII.

At times the datacomputer needs to fill In a value or a
part of a value. The user can specify a fill character
thus:

S, F= ia'

or
F=n

where a is an ASCII character and n is a decimal number.
The default fill character Is blank for ASCII data and zero
for non-ASCII data.

Note that a byte size and a fill character can apply to
a STRUCT or a LIST as well as a STR or a BYTE. Consider the
following:

CREATE F FILE LIST
R STRUCT, B"36

A STR (5)
END;

The byte size of A is 7. A takes up 35 bits. There Is one
#"unused" bit after A before the next R. Thus, R mjst be
filled. Even though the data (i.e. A) is ASCII, R Is
non-ASCII because it does not have a 7-bit hyte size.
Hence, the default filler of 0 Is used for the bit.

The rules for punctuation, byte size and fillers are
simple but not at all Intuitive. In general, specifying
punctuation rather than relying on defaults helps avoid
errors. Also

LIST <pathname> %DESC;

I -

Chapter 2: Containers Pape 12

will output a complete description, Including all default
lengths, dimensions, punctuation, byte sizes and fillers.
(The LIST command is discussed more fully below.) It Is
often Instructive to look closely at the %DFSC to see where
it Is different from what the user expects.

BYTEs and STRings that will frequently be used for
retrieval may be Inverted. For members of outer LISTs, the

option

,IuD

Is used. for members of Inner LISTs, the option

i., ,1=1

is used. Inversions and the difference between outer list
members and inner list members is discussed more fully In
the section on WITH.

IJI

L _

Page 13

Chapter 3: Directory Commands

Before data can be input to or read from a FILE or
PORT, the container must be open, and a mad& must be
specified for It. The mode of a FILE or PORT, which is set
when the container is opened, determines the legality of
various operations on that container.

Mode is one of READ, WRITE, or APPEND. Data can only
be transmitted out of a FILE or PORT that Is open In READ
mode, but either out of or Into a FILE or PORT that is open
in WRITE or APPEND modes. The difference between WRITE and
APPEND lies in their treatment of any data that is already
in the container when it is opened. When an assignment is
made to a container that was opened in WRITE mode, any data
it contained previously is thrown away, but a container
opened in APPEND mode has newly-arriving data written after
the end of any already-present data, which is thus
preserved.

A variation of WRITE and APPEND is WRITE DEFER and
APPEND DEFER. When DEFER is indicated as part of the mode,
a more efficient technique of updating the Inversion is
used.

When a FILE or PORT Is created, It is opened In WRITE
mode. A FILE/PORT that already exists may be opened with an
OPEN request:

OPEN <pathname> <mode> ;

which specifies the name of the container that is to be
opened and the mode of opening. The name can he either a
complete pathname (started with the reserved word %TOP) or
it can be a login pathname, started with a node immediately
subordinate to the current login node. The mode must he one
for which the user has privileges (see Chapter 4). The mode
argument may be left out of an OPEN statement, In which case
the container Is opened In READ mode If It Is a FILE and
WRITE mode If it Is a PORT. Two outermost containers with
the same ident may not be open at the same time.

For example, to read data that was previously stored In
CCA.DATA.F, a file, either

OPEN CCA.DATA.F;

Chapter 3: Directory Commands Page 14

or, if the current login node is CCA,

OPEN DATA.F;

WILL OPEN F PREPARATORY TO DATA TRANSFER REQUESTS.

The mode of a container that is already open may be
changed with the MODE statement:

MODE <paragraph> <mode> ;

The pathname can be a simple complete pathname (i.e. a
complete pathname with no passwords), a simple login
pathname, or a node name.

CLOSE

The complement of the OPEN request is the CLOSE
request. When you have finished using an open container,
close it with

CLOSE <pathname> ;

where pathname must be the simple pathname of an open
container. Closing a FILE/PORT with a function of TEMPORARY
PORT has the effect of deleting its description from the
datacompu ter.

DELETE

The ability to delete directory nodes is useful in
maintaining a data base at the datacomputer. The DELETE
request allows one to delete one or several outermost
containers and all the data they contain.

DELETE <pathname> ;

causes the node named by <pathname> to be deleted from the
directory. The pathname must be the login pathname. Thus,
only nodes subordinate to the login node can be deleted.
The node cannot have any subordinates.

DELETE <PATHNAME>.**

deletes the node and all subordinate nodes. If any of the
deleted nodes are outermost containers, the container
descriptions and any associated data are deleted as well.
The DELETE request need not be used on TEMPORARY PORTs, as
they are automatically deleted either when they are closed,

L __

Chapter 3: Directory Commands Pace 15

or at session end.

If the data stored in FILE is to be deleted, but the
container description itself retained in storage, the DELETE
request cannot be used. Instead, CREATE a port B with a
description matching the container A that is to be emptied,
and execute the assignment A - B with no data In B. the
effect of this assignment is to delete all the data from A.

LIST

The LIST request is the means by which the user
Interrogates the datacomputer about his environment. The
request has two arguments: the node or nodes which are the
object of the inquiry, and the type of information desired.

The first argument consists of a set of nodes in the
directory. Possible node sets are: 1) a single node, 2) all
nodes directly subordinate to a given node, 3) a node and
all its subordinates, and 4) all open files and ports. A
single node Is specified with a full pathname, which can
Include passwords and can be anchored at the top node
(%TOP). The set of a node's direct subordinates Is
indicated with either a "*' (the login pathame Is implicit)
or a full pathname followed by a "*". Either "**" or a full
pathname followed by a "**" designates a node and all Its
subordinates. The set of all open nodes is referenced by
%OPEN. %TOP alone defaults to %TOP.**.

There are five kinds of available information. These
are: 1) node names and related data (node type, privileges,
and possibly mode and connected argument), 2) parsed data
descriptions (of FILEs and PORTs), 3) original source text
of data descriptions, 4) allocated space (for FILEs), and 5)
privilege blocks associated with nodes. These information
options are specified by %NAME, %DESC or %DESCRIPTION,
%SOURCE, %ALLOC or %ALLOCATION, and %PRIV or %PRIVILEGE,
respectively. The default option is %NAME.

Not all of the kinds of Information are available for
all of the possible node sets. The options that are

available are:

Node Set Option

<pathname> %DESC
<pathname> tNAME
<pathname> %SOURCE
<pathname> %ALLOCATION
<pathname> %PRIVI LEGE
<pathname>.* %NAME
<pathname>.** %NAME

_
__ F

1~I

L tP= l-Ill ' - U i i Iii m Illm

Chapter 3: Directory Commands Pare 16

<Pathname>.** %SOURCE
%OPEN %NAME
%OPEN %DESCRI PTION
%OPEN %SOURCE
%OPEN %ALLOCATION

X6

Page 17

Chapter 4: Security and Passwords

The 0/10 version of the datacomputer provides file-level
security (restricted access to nodes and attendant data) by
means of a system of .y.vj,, blocks, descrihed In the
following sections. One or more (or no) blocks may he
associated with a particular node. Each privilege block
defines a class of users who may be given access to the node
and the set of pr.J.leg to be granted to such users.
Whenever a user attempts to access a node or file, the
datacomputer will scan that node or file's privilege
block(s), if any, to ensure that the user is 'legal' and to
determine what privileges will he allowed.

. Ltp Organization

This chapter is divided into three principal parts. The
first sections describe what privilege blocks are and how
they provide file security functions for datacomputer users,
and introduce the reader to the security features of
datalanguage. The second part completely specifies the
datalanguage needed for creating, deleting and manipulating
privilege blocks, and completes the description of their
components begun in the first part. The third section
offers several examples of how to add, delete and look at
privilege blocks.
Gaining Accpss tQNds OI

Every node in the directory has certain privileges

associated with it. For example, the ahility to create
inferior nodes, or to read or write file data, are
privileges which may be granted or denied to a particularnode. When a user initially connects to the datacomputer ho

is automatically connected to the top node of the directory
tree (%TOP), and he (i.e., the %TOP node) is granted minimal
privileges. To acquire more, he must log In to some node,
which is called, curiously enough, the login node.

Logging into this node establishes the user's identity for
subsequent pathname references (1). It should he kept in

(1) In addition to establishing a user Identity for
privilege purposes, logging in performs various accounting
and pathname context functions.

Chapter 4: Security and Passwords Page 18

mind that a user is identified to the datacomputer Daj by
his login node. Thus, throughout this chapter, the terms
'user-ld' or 'user name' are to be understood to mean

nothing more than the full pathname, including the specified
privilege block (if any) at each level (2), of the node to
which the user has logged-in.

Whenever a logged-in user references a node, the login
pathname is compared against the user-ld field of every
block in the node's privilege block list. If a block is
found whose user class description includes the pathname of
the login node, the privilege-set described by the block
will be added to (or taken away from) the privilege set
already given to the login node.

Privilege set specifications come in two flavors: privileges k

to be granted (added) to the node and privileges to he

denied (taken away). If a privilege is not specified (as

either grant or deny), then that privilege (or denial of It)
is passed, unchanged, from the superior node to its
subordinate. At each node level, the deny hits specified in

the given privilege block are NOT-AND'ed with the privileges
of the superior node. Then the grant privileges are OR'ed

with the result, to yield the privilege set for that node.

It is Important to understand that privige ma.y be ad
ad taken away At Avery e.v. (2 t.e natL. For example,
suppose the login node has the privilege set (CLWA> (3), and
a subnode's privilege block specifies: grant read privilege
(G=R), and deny write privilege (D=W). The result at the
subnode would be the final privilege set of <CRA> (4).

(2) Pathnames may be oJaalf.le or LguaJ.fled. A qualified
pathname is one containing password strings for the purpose
of gaining particular privileges upon opening the node,
e.g.,

NODEI('PASSWORD1').NODE2.NODE3('PW3')

is a pathname qualified at the first and third levels by the

passwords 'PASSWORD1' and 'PW3', respectively. The pathname
NOOE1.NODE2oNODE3, on the other hand, Is unqualified. Prior
to Version 0/10, all pathnames were unqualified.

(3) This is a shorthand way of saying 'this node has been
granted control <C>, login <L>, write-to-flle <W> and
append-to-file <A> privileges. Specific privileges are
described in detail below.

Chapter 4: Security and Passwords Pae 19

Note that a node can never look at, modify, or affect a
superior node In any way not possible at the level of the
superior. That is, if a user cannot look at the privilege
blocks for a node, he cannot acquire that privilege for that
node from an inferior one. However, an inferior node may
well have privileges relative to its suhnodes that its
superior does not have relative to its suhnodes. For
example, scanning along the pathname A.B.C.D.E...., A.B.C
may have only read privileges, but does not have write
privilege. Now, the node A.B.C.D may be granted write
privilege at level D (thus awarding A.B.C.n read/write
privileges), this does not affect A.B.C. it still has only
read privilege.

Privilege blocks are data structures which define access to
nodes. Each privilege block is associated with one
particular node. Any node in the directory, Including ports
and file, may have privilege blocks defined for them. A
node may have any number (including zero) of privilege
blocks. When an attempt is made to access a node which has
privilege block(s), those blocks are scanned for a user-id
corresponding to the current login pathname and for a
password string matching that supplied by the user in the
request referencing the node (e.g., LOGIN, OPEN, DELETE,
etc.). If a match Is found, the matching block's privilege
set bits are examined and the appropriate privileges are
granted/denied the node. The matching algorithm is
described below in more detail.

Each privilege block can contain:
user name
host name
socket number
password character string
grant privileges
deny privileges

Each of the above fields falls Into one of two categories:
1) a description of the group of users which may access the
associated node; and 2) the privileges to he granted to
these users.

The privilege block Is completely specified at the time It
is created. When a node Is referenced, only the password
string, If any, is required; the user-id (including host
name and socket number), has been retained by the login
process.

(4) The login privilege is not propagated to suhnodes. It
applies only to the node for which It Is explicitly granted.
See below.

Chapter 4: Security and Passwords Page 20

Privilege blocks are created by the datalanguage command
CREATEP. They are deleted by the command DELETEP. Existing
privilege blocks may be displayed via the LIST nodename
%PRIV(ILEGE) command. The full syntax of these commands is
described below.

User Identification Felds JUR.r-.1J

The user identification fields Include some or all of the
following: a valid login pathname or a class of login
pathnames, the number of a host computer, the datacomputer
socket number, and a password character string. These
fields are discussed in more detail In the following
sections.

The host name is an optional field. If specified, it must
be a decimal number from 1 to 255 designating the number of
the host computer. The host name cannot be a number greater
than 255, or less than 1. It cannot be a character string,
except for the special cases LOCAL and ANY.

LOCAL host indicates that the user should not have connected
to the datacomputer via the ARPANET. Effectively, this
means (at this time) that the user is located at CCA and Is
connected to the datacomputer via a local terminal.

The host name may also be ANY, which means that any host,
foreign or local, is acceptable.

If a host name is not specified, the default value Is ANY.

.Jcr aam*

The user name is the pathname or classname (5) of the login
node(s) which may gain access to the node associated with
the privilege block. Note that a different privilege block
must be created for each specific user permitted to use a
given password. For example, if two different users, say
CCA.WALDO and CCA.DINGLE, wanted to use the same password
string ('FOO') to gain access to a node, two separate blocks
would have to be created, one per specific user name. Thus,
in this example, one privilege block would contain the
Information CCA.WALDO (FOO'); the other,

(5) User classnames are defined below.

I,

S- - - W" - -' ' " " ' - " t_-.'.'_

_ Th

Chapter 4: Security and Passwords Page 21

CCA.DINGLE (IFOOI).

If no user name Is specified, the default is **, which
grants any user access to the node.

SSok

The socket number is a 32-bit number, e.g., 600403, or ANY.
This is an identification number assigned by the foreign
host to the user logged in on that foreign host. Usage of
the socket number in the CREATEP statement ensures that only
specified users at the foreign host site may gain access to

A a Particular node.

Socket number defaults to ANY.

Passwjord

A password consists of an alphameric string enclosed by
single quote () characters, e.g., P-'FOO'. Non-printing
characters, except blanks, are not valid in a password
string. Blanks may appear at any point in the quoted
string. Tab characters are not permitted.

A privilege block need not contain a password. In this
case, none should be given when referencing the node. Note
that =n password is n= tb &A= l, and is is treated
differently from, a null password (11). Null password is
treated as a password of zero length, and must be supplied
as such whenever the node Is referenced.

P.rivJ.ile sopnifirations

The following privilege bits are defined for 0/10:
LOGIN (L)

In order to control login identities
more closely, the ability to log In to a
node is not passed to subordinates. As
a result, -L (deny login) Is
meaningless.

CONTROL (C)
Control includes complete subordinate
control and privilege control. Control
is required for creating and deleting
nodes, file

s and privilege blocks. It
is also required for listing privilege
blocks. It is very powerful, and cannot
be removed by an inferior: -C is not
permitted. After 0/10, C may be split
into meaningful components.

__

.;Th -*- a . , -

Chapter 4: Security and Passwords PaRe 22

Data Control Privileges
READ (R)
WRITE (W)

W implies R and A.
APPEND (A)

A does not imply R.
Conflicts are not allowed in one tuple, e.,.

+R and -R.

Ordering M1Prf l~ B locks

The ordering Qf prilege blocks .Ls Important- When a node
is referenced, the privilege blocks (if any) for that node
are scanned linearly for a password string matching the
password entered by the user. if a match Is found, the
user-id of the privilege block is compared to the login
Identity. If they match, the associated privileges are
granted/denied, and access appropriate to the granted
privilege set are awarded to the node. If the end of the
privilege blocks is reached without finding a
password/user-ld match, the node is opened with no
privileges.

Since the privilege blocks are scanned linearly, their
ordering defines their selectivity. For example, suppose a
node to have two privilege blocks which specify the same
password (foo') but different login nodes, say, A and **,
and suppose that the block with user name A grants greater
privileges (read/write/append) than that with ** (which
permits read). The proper ordering, as displayed by a

LIST WALDO.NODENAME %PRIV(ILEGE);

statement, is as follows:.(note 6)

(1),U=A,H=ANYSANY,G-RWA
(2),U=**,H=ANY,S=ANY,G-R (note 7)

If the order of these blocks were reversed, so that the
block with the user name 1**1 were first, then whenever the

password FOO was encountered the first block would be
selected; i.e., every login pathname would match the *
and the matching process would be complete. Thus, the block

(6) Details of this command are given below.

(7) U-** means that any user name will be accepted as valid.

I

i

Chapter 4: Security and Passwords Page 23

with the user name A would never be found, and the user A
would be unable to open the node with the greater privileges
which should be granted him.

In 0/10 the user Is responsible for maintaining the desired r
search order, by adding and deleting privilege blocks via
their block index numbers. The datalanguage for this
process Is described below. Future versions of the
datacomputer may provide an automatic ordering algorithm,
which could be manually overridden, if desired.

User classes C'Starl £eLu2
Classes of users may be given access to a node by specifying

a user class as the user name instead of a single user.
This is done by means of the '*' and O**, ('star' and
'star-star') features. If a star appears in a pathname, it
is interpreted to mean: 'any single (non-null) partial
pathnarle Is acceptable here'. That is, if the nodes A.B.N1,
A.B.N2, and A.B.N3 exist in the directory tree, usage of the
user classname A.B.* would specify any of these three
pathnames. Stars may appear at any number of levels; for
example, if the nodes A.X.N1 and A.Y.N4 exist, then the
user-name A.*.* would specify both of these nodes, as well
as any of the previous three. The use of a star at any
level implies that there must be a partial pathname at that
level; e.g., the classname A.*.* could not specify node A or
A.J.

The use of a single star in a pathname indicates that a node
must exist at the level corresponding to that of the star,
and a star must be explicitly specified for each desired
level. The star-star feature Is designed to permit access
to several levels of nodes. A star-star ('**') ?n a user
name Is interpreted to mean: 'any number (including zero) of
partial pathnames are acceptable here'. Thus, referring to
the example of the preceeding paragraph, A.B.N1 could be
specified by any of the following:

A.B.Nl.**
A.B.*.**

A.B.**
A.*.**
A.**

**

For 0/10, only trailing *Is and/or a final ** are allowed.
The following, for example, are illegal:

A.*.C

2....... .. _,,_ _ _ __i_ _ _ _

L _

Chapter 4: Security and Passwords Page 214

A.** .C
A. * **.

* *B. *

KDatalangua~ Security

Two new datalanguage statements, CREATEP and DELETEP, create
and delete privilege blocks. They are discussed in the
following sections. The list command has a new option,
%PRIV (or %PRIVILEGE), which allows the user to list the
privilege blocks for a node.

CREATEP and DELETEP are privileged requests. They are only
accepted when the associated node can he referenced with
control privilege <C>. (This means that It may be necessary
to login to some particular node before any privilege blocks
can be added to another, and that passwords may he required
for the login process or for referencing nodes superlor to
the node for which the privilege block is to he added.)

Creatinz PLiYe Blocks:. CREATEP

Privilege blocks are created, and fully specified by, the
CREATEP command. A fully specified CREATEP statement might
appear as follows:

CREATEP NODE1('PW1').NODE2, U=CCA.WALDO.*.**, H=34,
S=604320,

P=SECRET PASSWORD', G=R, D=WA, N=2;

In this example, the node for which we are creating a
privilege block is NODE1.NODE2. We must specify ('PW11) for
NODEl in order, perhaps, to gain control privileges at the
first level. The parameters which follow the nodename Is
the privilege keyword list. These are discussed
individually in the following sections, and are summarized
In Appendices A and B.

The user name is specified by '(J-' followed by an
unqualified pathname or classname string. The pathname may
have any number of levels. It must not contain password
strings for any level.

The following are valid pathnames/classnames. 2

CCA
CCA.WALDO.DI NGLE

Chapter 4: Security and Passwords Page 25

CCA.* .*
CCA.**

CRAE: Number

The host number Is specified by '[=' followed by a decimal
number from 1 to 255, or either of the strings LOCAL or ANY.

H=28
H=ANY
H=LOCAL

"REATEi Socket Nmbar

The socket number is specified by 'S=' followed by the
32-bit foreign-host assigned decimal number corresponding to
the directory the user is logged into at that foreign host,
or the string ANY.

S=309483
S=ANY

Pa String

The password string is specified by 'P-' followed by any
datacomputer string constant (tabs may not be Included,
although blanks are permitted), e.g., 'PASSWORD 1', '? *
++III, or (null password).

Note that if no password string Is specified at CREATEP
time, then that privilege block will have no password
associated with it. Nj password is different from nulJ I,
password (P-11), which is a valid password zero characters
In length.

CREAIEP Gant PrLvLeges

Privileges are granted by °G-' followed by
C (control)
L (login)
R (read file data)
W (write file data)
A (append data to file)

in any combination and In any order, e.g., G-CRAWL (all
privileges), G=WAR (read/write/append), etc.

-i

Chapter 4: Security and Passwords Page 26

CEAIEP:De= PL LLeggs

Deny privileges are specified by 'D-' followed by R, W or A.
Login (1) applies only to the node for which It is
specified. It is not passed to subordinates. Control (C)
cannot be removed by any inferior node, i.e., it Is passed
to all subnodes.

CETP rilfeBlock Index

As privilege blocks are created, they are assigned index
numbers by the datacomputer. Block numbers are assigned to
privilege blocks sequentially according to their search
order. Block numbers can range from one to n, where n Is
the total number of password blocks In the search sequence.
Blocks can be explicitly ordered by the user at CREATEP time
by entering IN= followed by the number that the newly added
block is to have In the search sequence. N must be greater
than zero, and not greater than the total number of
privilege blocks currently existing for the node. Note that
this index is not in any sense a part of the data contained
in the privilege bldck; It is merely the position of the
block In the password block list.

An example. If there were three blocks in the privilege
block list for a node (NODE1),

1 U-AAA
2 U=CCC
3 U=DDD

and a new block were to be added between the first and
second existing blocks, i.e., so that the new block would
then occupy second position, we add a keyword, Nw2, to a
CREATEP command:

CREATEP NODE1,U=BBB,P-'ZOO1,N=2;

which results In the following privilege block list:

1 U=AAA
2 U-BBB
3 U=CCC
4 U-DDD

If N had been omitted, the new block would have been added
at the end of the list. Note that the indices of the two
blocks following the new one have been humped by one.
Similarly, if any block Is deleted, the indices of all the
following blocks are reduced by one.

,4

F- - _ _

Chapter 4: Security and Passwords Page 27

In order to permit the user to list privilege block
information, the %PRIV (or %PRIVILEGE) option has been added
tO the datalanguage LIST request. It looks like this:

LIST CCA.WALDO %PRIV (or)
LIST CCA.WALDO %PRIVILEGE

Passwoidsa.nn ~.Lbste A.Jb. -PRIV opL 0 (or In a.y
other way - so don't forget 'em!). Privilege block
information is preceeded by the Index number of that block.
All other Information in the privilege block is listed In a
format similar to that which might be found In a CRFATEP
command, e.g, either of the LIST requests above might
generate the following output from the datacomputer:

(1),U=CCA.WALDO,H=LOCAL,SmANY,G=CRAWL
(2),U=CCA.*.**,H=ANYS=ANYGRWAL --

(3),U=*.**,H=32,S=654364,G=RL,DWA

%PRIV may be used only when the controlling node has control
privileges.

flUP- L r yI Le]Qck: DEE

Privilege blocks may be deleted with DELETEP followed by the
Index number of the privilege block to be deleted,

DELETEP 3

The controlling node must have control privilege.

4

L,

Chapter 4: Security and Passwords Page 28

This example will create a node which will be the
controlling node for ' all other nodes at site CCA.
Presumably, access to this controlling node would be
restricted to very few persons at that site; #super-users',
as it were. This could be done by means of a password. In
addition, anyone seeking control privileges for CCA might be
required to be logged-in to some other (access restricted)
node. The person with access to CCA would be responsible
for creating subnodes, perhaps one for each programmer
permitted to use the datacomputer. These Individual
programmers could then create their own directory structures
(nodes, ports and files) In any manner they wish.

The site-node CCA is created by the following series of
requests:

CREATE CCA;
CREATEP CCA,P-'HONCHO',G-CL;
CREATEP CCAP-'FLUNKY',G=L;
LOGIN CCA('HONCHO');

The user is now logged in to CCA. He has control

privileges. Next he creates a series of programmer-nodes,
each with control privileges. initially, two privilege
blocks are created for each programmer node. One requires a
password (known to, and probably specified by, the
individual programmer), and the other requires no password
and is accessible to anyone logged In to CCA or any of its
subnodes. However, persons who log in to a programmer node
without specifying a password are not given control
privileges and thus cannot modify or delete anything that
the programmer wishes to keep secure.

CREATE WALDO; CREATEP WALDO,U-CCA,P-'TURKEY',G - c L;
CREATEP WALDO,U-CCA.** G-L;

CREATE CLYDE; CREATEP CLYDE,UaCCA,P-'FETCHI,G-CL;
CREATEP CLYDE,U-CCA.**,GuL;

CREATE DINK; CREATEP DINK,U-CCA,P-1POnUNK',G -CL;
CREATEP DINKUmCCA.**,G=L;

After this is done, super-user checks the privilege blocks
he has created, first at his own node level:

LIST tTOP.CCA('HONCHO') tPRIVILEGE;

I

Chapter 4: Security and Passwords Page 2q

and he receives a datacomputer printout In the following
format:

(1) ,U-**,H=ANYS=ANYG=CL
(2) ,U=**,H=ANYS-ANYG-L

He next verifies that each of the programmer-node privilege
blocks has been correctly entered, e.g.,

LIST WALDO %PRIV;

and the datacomputer replies:

(1) ,U=CCAH=ANY, S=ANYG-CL
(2),U=CCA.**,H=ANYS=ANYG=L

At this point, programmer Waldo tells super-user that he
would rather have 'donkey' as his control password rather
than 'turkey'. Since the user name (U=CCA) in Waldo's
control privilege block is more restrictive than the user
name (UuCCA.**) in the non-control privilege block, the
first privilege block must be deleted and the new one added
in the same position (N=1):

DELETE WALDO 1;
CREATEP WALDOU=CCAP='DONKEY',G=CLN-1;

We now have the following directory:

CCA
CCA.WALDO
CCA.CLYDE

CCA.DI NK

Each of the programmer-nodes listed above has Its own
password which is known to the person having access to that
node. In addition, each is required to login to CCA before
being able to acquire login and control privileges at its
own level. (Most or all of the programmers at CCA are given
only the password FLUNKY, which does not give control
privileges. Thus, they cannot create or delete any nodes at
the programmer-node level or look at the restricted data of
any other programmers.)

As soon as he is Informed that he may join the select
international hoard of datacomputer users, Waldo rushes to
his terminal to login:

LOGIN CCA('FLUNKY');
LOGIN WALDOCODONKEY');

L

Chapter 4: Security and Passwords Page 30

Since he has logged in to his node using the password which
grants control privileges, Waldo now creates BOOKFILE and
BOOKPORT and reads some data into BOOKFILE from a TENEX file
named TENEX-BOOK.FILE (note 8):

CREATE BOOKFILE FILE LIST(,1000),P-FOF
BOOK STRUCT

TITLE STR (,100),C=1
AUTHORS LIST(,5),C=1

AUTHOR STR (,50),C=1
PUBLISHER STR (,50),C-1

END;

CREATE BOOKPORT PORT LIST(,1000),P=EOF
BOOK STRUCT

TITLE STR (,100),P=EOR
AUTHORS LIST(,5),P-EOB

AUTHOR STR (,50),P-EOR
PUBLISHER STR (,50),P=EOR

END;

CLOSE %OPEN;

OPEN BOOKFILE WRITE;
OPEN BOOKPORT; CONNECT BOOKPORT ITENEX-BOOK.FILE';
(NOTE 8)

BOOKFILE-BOOKPORT;

CLOSE %OPEN;

In order to permit others to look at his library file, Waldo
creates a couple of privilege blocks. The first permits
anyone at CCA to look at his book list, while denying him
the right to change anything. The second is for Waldo's
private use in changing the file:

CREATEP BOOKFILE,U=CCA.*,G=R,DuAW;
CREATEP

BOOKFILE,U-CCA.1!ALDO,Pu'READ*MORE*EVERY*DAY',G-RWA;

(8) A TENEX filename is used In this example for the purpose
of didactic clarity. In practice, this would usually be
done only by local datacomputer users (users located at the
site of the datacomputer). Remote users would have to
arrange for operator Intervention, if connecting t- a file
at the datacomputer site; or would specify the host name and
socket number from which the data would be sent to the
datacomputer.

~- .t

Page 31

Chapter 5: Assignment and For-loops

Aisamt .n±xvnr Outormos CnnLLD*L1

Transmission of data is achieved with an assignment.
The syntax of an assignment request that Involves two
outermost

containers is

<Ident> - <ident>;

where the <Ident>s are the node names of open outermost
containers. The first ident in the statement is that of the
receiving container; it must be open in either WRITE or
APPEND mode. The second ident is that of the transmitting
container; It can be open in any mode, but It must have READ
privilege (see Chapter 4).If the second Ident is a FILE, it
must contain some data.

The containers in the assignment may be either files or
ports. The various combinations are listed here, with a
description of the action of the assignment request in each
case.

Receiving Transmitting Comment
container container

FILE FILE copies data from one FILE to another
within the datacomputer.

FILE PORT transmits data from some source
external to the datacomputer through
a PORT, into a FILE.

PORT FILE transmits data from a FILE, where it
is being kept In the datacomputer,
through a PORT, to the outside world.

PORT PORT transmits data from one place to
another in the outside world, using
the datacomputer only as a channel
for transmission.

Tahch±DL klaa

In any assignment statement such as

Chapter 5: Assignment and For-loops Page 32

X a Y;

(not only one Involving two outermost containers) the two
operands, X and Y, each has its own description. The
datacomputer will transform the data In Y to match the
description of X. In order for the datacomputer to be able
to do this, the descriptions must match. This amounts to a
restriction that only similar objects can be assigned to
each other. Specifically, for two assignment-operands X and
Y to match:

1.A. X and Y must have the same tv=e: LIST, STRUCT, or
STR, or BYTE,

AND
1.B. If X and Y are both LISTs, then they must have

compatible sizes, or else X must be a PORT. The sizes are I
compatible if the minimum size of X is less than or equal to
the minimum of Y and the maximum size of X is greater than
or equal to the maximum size of Y. This restriction leads
to cases where it is legal to assign Y to X but not to
assign X to Y. Note that if X and Y are outermost lists
with no list size specified, the datacomputer supplies a
default size based on the space allocation. (use the LIST
request with the 4DESC option to find out what the default
size is.)

AND
1.C. If X and Y are STRUCTs or LISTs, then at least

one container immediately enclosed in X must match, Ad ha=z
thb= ame ident al, one container Immediately contained In Y,

OR

2. X must be a STRing and Y a constant. A constant is
an arbitrary string of characters. If they are enclosed by
single quote marks, then Is is an ASCII constant; a single
or double quote mark may be Included in such a string only
by prefixing It with another double quote. The constant
'DON"°T' represents the string DON'T. (This rule is
Included here for comleteness and will be discussed later.)

Pading AA -Truncation

If two containers of type STR are used In an
assignment, the matching rules do not require that their
sizes match. There are three cases:

1. The two sizes are equal. The string is assigned
without change.

2. In the assignment X-Y, the size of X is greater
than that of Y. In this case, It Is as If the string In Y
Is padded at the right-hand side to make It as long as X,
before assignment Is performed. If a fill character Is
specified in the description of X (i.e. If the parameter

I

Chapter 5: Assignment and For-loops Page 33

F-'a' or ,F-n Is used In the CREATE request), then that
character Is used. Otherwise, a blank Is used for ASCII
strings and zero Is used for non-Ascil data.

3. The size of X is less than that of Y. The string
contilned in Y Is truncated at the right-hand side to be as
short as X, and the shortened string is then assigned.

Let us consider a few examples of the operation of the
rules. Suppose we have

CREATE M FILE LIST (25), P=EOF RECORD STR(10);
CREATE N TEMP PORT LIST (25), P-EOF RECORD STR(1O) ;
M a N;

where M Is a FILE In which data read from the PORT N is to
be stored in the datacomputer. The assignment M - N Is
legal because M Is in WRITE mode and both M and N are open
(opened by the CREATE statements). In addition, M and N
match: their subcontainers have the same Ident (RECORD), and
matching descriptions. They satisfy rule 1.A, since the
type is STR in both cases, and rules 1.B and 1.C do not
apply to containers of type STR.

The effect of this assignment Is to read strings of
length 10 from the PORT N, and to store them in the FILE M.
If an attempt is made to store more than 25 strings In M,
the datacomputer will complain, as space was allocated for
only 25 strings. However, the 25 in the PORT description is
Ignored.

A similar example, using the above description for M:

OPEN M APPEND;
CREATE 0 TEMP PORT LIST, P-EOF

RECORD STR (,15), P-EOR ;
M M 0;

Each STRIng in 0 is no more than 15 ASCII characters and
ends with an EOR. Each one will be padded or truncated to
10 characters since M has fixed-length rather than
punctuated STRings.

Now a more complex example.

CREATE FF FILE LIST (25), P-EOF
PERSON STRUCT

NAME STR (15)
ADDRESS STR (20)
CITY STR (10)
STATE STR (2)
ZIP STR (5)

L

Chapter 5: Assignment and For-loops Page 34

SOCSECNO STR (10)
DEPENDENTS LIST (10) NAME STR (15)

END ;
requests that store data in the FILE FF ...

CREATE PP PORT LIST, P-EOF
PERSON STRUCT, P=EOR

NAME STR (15)
SOCSECNO STR (10)

END;
PP a FF ;

Here, the assignment PP - FF is legal because: PP Is In
WRITE mode, both FF and PP are open, and their descriptions
match. Rule 1.A: the type of both FF and PP is LIST. Rule
1.B: PP is a PORT. Rule 1.C: the subcontainer PERSON
immediately contained in FF has the same ident as PP.PERSON,
and the two STRUCTs PERSON match. We determine this last
fact by going round once again with the matching rules.

Rule 1.A: FF.PERSON and PP.PERSON have the same type,
STRUCT. Rule 1.8 does not apply to STRUCTs. Rule 1.C: a
container Immediately contained in FF.PERSON,
FF.PERSON.NAHE, has the same ident (NAME) and a matching
description (STR (15)) as a container immediately enclosed
by PP.PERSON, that is, PP.PERSON.NAME.

The effect of this assignment is to create a new
instance of the struct PP.PERSON for each Instance of PERSON
in FF, and add it to the LIST PP (that is, output It through
the PORT PP). Each PERSON that is output contains only a
selection of the data stored in FF: only the NAME and
SOCSECNO.

If the situation here were reversed, that Is, If FF
were open in WRITE mode, and PP were in READ mode, the
effect of the assignment

FF a PP;

would be to read data from the PORT PP and store It in the
FILE FF. However, only the NAME and SOCSECNO would be
available as data. The datacomputer handles this situation
by assigning strings consisting only of blanks (the default 4
since no fill character is specified in the description) to
the unmatched STRs in the output LIST-member. Thus,
ADDRESS, CITY, STATE, ZIP, and all 10 Instances of
DEPENDENTS.NAME would be blank in the FILE FF.

Very often, assignment at the level of outermost
containers is all that a user's program will require of the
datacomputer. An example would be a time-sharing monitor
system, which might want to store backup files, large files,
or infrequently-used files at the datacomputer rather thanI

.. _____. *- s• ' ...

I.

It

Chapter 5: Assignment and For-loops Page 35

* locally on (expensive) disc storage devices. Typically,
such a monitor system would Itself keep track of where
various files resided, and move them from place to place
over the ARPA network without burdening its users with the
details of exactly where their files were stored. -

For such an application, a directory might be set up
with one node identifying the operating system that Is doing
the file storage. Subordinate to this node might be the
user idents of its various time-sharing users whose files
might be stored on the datacomputer. These user nodes, In
turn, would have the file-names themselves as subordinate
nodes; as bottom-most nodes, these would also be outermost
containers and thus could store the data itself. As a
diagram:

SYW7?

SAM SMITH JONES DURFEE

L l 1WORKFL

Figure 5-3. The directory for a sample application:
providing backup file storage for time-sharing users

A directory of this sort would Initially be set up by

several CREATE requests; i.e.

CREATE SYS87;
CREATE SYS87.SAM; CREATE SYS87.SMITH;
CREATE SYS87.JONES; etc.

Then, whenever a particular file was to be moved to the 1<
datacomputer, a directory node for that file would he set up
by, for example,

CREATE SYS87.SMITH.FILE1 FILE LIST (999)
A STR(80);

-- ..

4

Chapter 5: Assignment and For-loops Page 36

(describing a file with less than 1000 80-character records)
and the file would be moved with an assignment statement
specifying a PORT with a matching description, and the FILE
FILE1, open In WRITE mode. Thus:

CREATE T TEMP PORT LIST A STR(80);

FILE1 = T;

Note that the two outermost containers FILE1 and T In
the assignment statement FILE1 = T match each other.

In order to recover the file from the datacomputer when
it is again needed, a PORT would be opened in WRITE mode
with

CREATE T TEMP PORT LIST A STR(80);
OPEN SYS87.SMITH.FILE1 READ;

T - FILE1 ;

and the reverse assignment would take place.

Spa Lon Qf LIST Mpmbprs

In the examples given above, there Is one output LIST
member for every input LIST member. Subsets of the Input
LIST member (i.e. the LIST on the right side of the -) may
be specified by the use of WITH clause as an Input-spec.
For example, consider the description

CREATE F FILE LIST, P=EOF
P STRUCT A STR(3) B STR(5) END;

and a matching PORT R. If only some of the P's on the LIST
F were to be output -- those with the string A equal to the
string '500', say -- one could specify

R = F WITH A EQ '500';

referring to the set of all members P of the LIST F that
have the given property. Note that A is understood to refer -

to F.P.A; see the section on the context rules below for an
explanation. Quotes are used in the expression '500' to
indicate that an ASCII string constant is Intended.

In a WITH clause, the expressions one can use to choose
certain LIST-members, which are called Boolean expressions,
must involve comparison of a container that Is a STR or BYTE
with a constant (like '500' in the example), using the
comparison operators

t

Chapter 5: Assignment and For-loops Page 37

EQ (equals)
NE (not equal to)
GT (greater than)
LT (less than)
GE (greater than or equal to)

and LE (less than or equal to).

Combinations of comparisons with

OR, AND, NOT, and ANY

are also possible. in precedence of operators, ANY (see
below) is highest; NOT is next In precedence, then AND,
which is in turn higher than OR; parentheses may be used to
affect the order of evaluation of these operators.

When using an Input-spec, the name of the Input
LIST-mernbpr may be used Instead of the name of the Input
LIST. (This is for consistency with the syntax of the
FOR-loop, discussed below.) Thus,

R - F.P WITH A EQ '5001;

is equivalent to the example above. Some sample input-specs
are thus:

F.P
F.P WITH A EQ '500'
F WITH A EQ 15001 AND B GT 'AZZZZ'
F.P WITH (A EQ '5001 AND NOT B GT 'MONDAI) OR

(A EQ '6001 AND B NE 'ZYYYY')

For ASCII containers, the operators GT, LT, etc. compare
the ASCII codes for the given strings and the given strings
must be of the specified length. This means that the
character blank is less than the digits, which in turn are
less than the letters. Consult a reference document for the -

complete list of ASCII codes for all characters.

Also, while an input-spec like

F.P WITH A EQ 151

is legal, it will not find any P's, since there are no A's

with only one character.

RatriMall U.inr Inner LILL MembAa

Consider a description like

G FILE LIST, P=EOF
R STRUCT

Chapter 5: Assignment and For-loops Page 38

A STR (4)
B STR (4)
W LIST (20)
WA STR (5)

END

Each R has 20 Wa's, since R contains an inner list (W). An
Input-spec like

G.R WITH WA EQ 'ABCDE'

specifies all R's with at least one Wa with value 'ABCDE'.
This may also be expressed as

G.R WITH ANY WA EQ 'ABCDE'

The former is called an I.lJ.j. ANY and the latter, an

The container WA can be used in boolean expressions

such as

G.R WITH
ANY (WA EQ 'MARCH' AND WA EQ

'33103')

G.R WITH ANY
(WA EQ 'MARCH' OR WA EQ 'WORD ')

G.R WITH ANY WA EQ 1123451 AND B EQ 'CALlI'
An ANY expression cannot be used within the object of
another ANY expression (nested ANY's).

In most cases, the explicit ANY is not required.
However, consider the description:

FAMILIES FILE LIST (100), P=EOF
FAMILY STRUCT

MOTHER STR (10)
FATHER STR (10)
CHILDREN LIST (10)

CHILD STRUCT
NAME STR (,10), C-1
AGE STR (2)

END
END;

The following expressions are not equivalent: -

FAMILY WITH ANY (CHILD.NAME EQ 'ELLEN' AND
CHILD.AGE EQ 1211)

FAMILY WITH CHILD.NAME EQ 'ELLEN' AND
CHILD.AGE EQ '211.

Chapter 5: Assignment and For-loops Page 39

The latter case Is Interpreted as:

FAMILY WITH ANY CHILD.NAME EQ 'ELLEN'
AND ANY CHILD.AGE EQ 1211

and refers to any FAMILY with an ELLEN who either Is 21 or
has a sibling who Is 21. The former only refers to FAMILYs
with a 21-year-old ELLEN.

In all of these examples, the Inner list Is the
second-level list. If there Is a third level list, Its
members may not be used in a boolean expression. For
example, given the description:

F FILE LIST R STRUCT
A STR(1)
L LIST (5)

Li LIST (5)
B STR (1)

END;

L1 is a third-level list, and so B cannot be used in a WITH
expression. However, A may still be used In a WITH
expression.

Rptriavd1q Usin Inverted Cnainers

A STR may be ja, if it Is contained In a FILE
which is a LIST and if the LIST members are fixed-size.
This Is useful if the STR will be used often In a hoolean
expression. Inversion Is specified by "I=D" or "1.1" as
follows:

CREATE F FILE LIST (0,100), P-EOF
P STRUCT
A STR (3), I-0
Q LIST (10)

B STR (5), I1
END;

The "I" of the above stands for Inversion, the "W" is used
with members of outer lists, the "-1" with Inner lists.

An Inversion on the string A greatly Increases the
efficiency of retrieving sets of outermost-LIST members by
the contents of the string A -- that Is, retrieving subsets
of the P's that are defined by their values of A. Retrieval
by content based on a particular string Is pgo.gsib whether
or not that string Is Inverted; only the efficiency Is
Improved by the existence of an Inversion on the string.

There is a certain cost associated with Inversion,
however, storage space must be allocated for a secondary

-AN.

Chapter 5: Assignment and For-loops Page 40

data structure that the datacomputer uses for retrievals
baseO on Inverted strings. Updating a FILE takes longer
when it Is Inverted, since the secondary data structure must
be updated as well. Thus, the decision to Invert a
Particular string will depend on the relative cost of
Increased retrieval time versus Increased storage space, the
frequency of retrieval based on the particular string, and
other considerations. Appendix C contains further technical
details concerning inversion.

AasignmDL AL.b fLO

Containers that are not outermost can also be used in
assignment statements. With FOR, assignments that retrieve
subsets of LIST-members may be performed, in contrast with
assignment of outermost containers. FOR causes some set of
datalanguage statements (usually assignment statements) to
be executed several times, once for each member of a given
set of LIST-members.

The syntax of the FOR-request is:

FOR <output-spec>, <input-spec> <body> END ;

The <input-spec> specifies a set of LIST-members to which
the operations specified In the <body> are to be applied. A
new member of the LIST specified by the <output-spec> is
created for each member of the Input set processed. If the
output-spec is omitted, the FOR-request generates no output.

TI p The Input-spec must specify a set of
LIST-members. The simplest kind of input-spec Is just an
entire LIST -- i.e. the set of all the LIST-members.
However, the name of the LIST-MgMb= and not the LIST Itself
must be given. For example, if

CREATE F FILE LIST, P.EOF
P STRUCT A STR (3) B STR (5) END;

then F.P would be a legal Input-spec, and would refer to the
set of all P's in the LIST F.

A subset of the LIST-members may be specified by the
use of a WITH clause In the input-spec. The input-spec on a
FOR-loop looks like the Input spec on the assignment of
outermost containers (discussed above), except that the
LIST-member must be named rather than the LIST. Thus

F.P WITH A EQ 1500'

.__ _ _ _ _ _ _ _ _. - " - '". .--

*I

Chapter 5: Assignment and For-loops Page 41

can be used in a FOR-loop, but not

F WITH A EQ 15001

Jhe 2mtaut-sn&G The output-spec is an optional
argument. Like the input-spec, it must be the name of a

V LIST-member. The LIST that contains the LIST-member
1; specified by the output-spec Is often called the output

.LIT. A new member is created and added to the output LIST
for each execution of the FOR-body.

A FOR-loop may be loosely thought of as assignment
between two LISTs. However, the descriptions of the members
of the input and output LISTs need not match. Otherwise,
the restrictions governing the Input and output LISTs of a
FOR are largely the same as those governing outermost LISTs
used in assignment:

1. Both LISTs must be open or contained in open
outermost conta~ners

2. If the output LIST is an open outermost container,
it must be in WR!TE or APPEND mode.

3. If the input LIST is not an outermost container,
the LIST that most Immediately encloses it must be the input
LIST of an enclosing FOR loop.

4. Similarly, if the output LIST Is not outermost, the
LIST that most immediately encloses it must be the output
LIST of an enclosing FOR.

The FOR-body The operations that are legal In a
FOR-body are assignment and another (nested) FOR. The
assignment may be of the form

<name> - <constant> ;

where <name> refers to a container that is a STR (see
matching rule number 3), or assignment may be of the form

<name> = <name>;

to transfer data from one container to another. If the
latter is the case, then assignment Is subject to

1. the restrictions specified In the matching rules
above,

2. the usual restriction that data can be transmitted
into a container only if it is open in WRITE or APPEND mode,
and

3. the restriction that assignment must occur between
oblects, not M.L aL .

4. In Version 0/10 of datalanguage, there are other
restrictions governing the containers that can he referenced
in the body of a FOR-loop. See Appendix E.

• - _ , ' ' . . . -

Chapter 5: Assignment and For-loops Page 42

Let us look at a few examples, and describe their
operation In words. With F a FILE as above, and

CREATE Q FILE LIST
P STRUCT

A STR (3)
B STR (5)

END;

OPEN F WRITE;then
F =Q

and
FOR F.P, Q.P

F.P - Q.P ;
END;

have the same effect: a new member P is created and added to
the LIST F.

1Likewise
FOR F.P, Q.P WITH A EQ '500'

F.P - Q.P;
END;

HAS THE SAME EFFECT AS

F - Q.P WITH A EQ '500'

A final example: with FF.PERSON and PP.PERSON as given
in the example for the matching rules,

FOR PP.PERSON, FF.PERSON WITH STATE EQ 'RI'
OR STATE EQ ICT' OR STATE EQ 'MAI

OR STATE EQ IVT' OR STATE EQ 'NHI
OR STATE EQ 'ME'

ED PP.PERSON.NAME - FF.PERSON.NAME;END;

will have the effect of outputting through the PORT PP, the
NAMEs of all PERSONs in the FILE FF who live in New England;
i.e. with STATE equal to one of the New England states.

I
I

- I
. • - 4 -" -- - _-' -- L __ 111 =

Page 43

Chapter b: Using the fatacomputer

We proceed now from the basics of the language Itself,
such as containers and assignment, to a broader view of how
datalanguage might be employed by a user's program. We will
discuss such matters as accessing the datacomputer,
transmitting data to and from datalanguage PORTs, and
various aids to the maintenance of data and FIi.F and PORT
descriptions on the datacomputer.

i~LtractLjL kdLt tj fatacoMoiiter

Typically, datalanguage requests will be sent to the
datacomputer by a user program residing on some comptter on
the ARPA network. All interaction between the user program
and the datacomputer takes place over the network.

Information transmission over the network takes place
along uni-directional paths. For a two-way conversation,
two such paths are needed, one for transmission In each
direction. The end of a transmission path Is called a
socket; a socket can be either a send (output) or receive
(input) socket. Obviously, a transmission path requires a
send socket at one end and a receive socket at the other. A
diagram of the sockets Involved in a two-way conversation
over the network appears below.

USER (HOST) COMPUTER DATACOMPUTER

USER OUTPUT
SOCKET IPTSCE

USERINPUT DATALANGUAGE
SOCKET OUTUTSOCKET

Figure 4-1. Network connections to the datacomputer

A host computer Is Identified on the network either by
a number or by an alphabetic name, like BBN-TENEX. A socket
within a given host is Identified by a number; send sockets

L

Chapter 6: Using the Datacomputer Page 44

have odd numbers and receive sockets even ones. For a
connection to be opened, both hosts involved must request
that it be opened. Likewise, after data transmission Is
complete, both hosts must close their ends of the
connection. The period of time during which network
connections are open between a user host and the
datacomputer is called a s .

In the user program's dialogue with the datacomputer,
the transmission in one direction consists largely of
datalanguage requests, while messages from the datacomputer
are sent in the other direction, to the user program. The
sockets at the datacomputer that are used for these purposes
are called the datalanuate inoguj soket and the
datalanuau s et. The terms datalanguage
input/output Dort are also used. These ports, like the
PORTs that a user can create with datalanguage CREATE
requests, are channels for the input and output of
information. However, the purpose of the datalanguage ports
is to receive datalanguage and transmit datacomputer
messages; the purpose of a user PORT is to transmit or
receive data.

The protocol by which a user program can set up
datalanguage Input and output sockets connected to its own
output and input sockets is described In Appendix n of this
document.

Synchr nizat ion

Since use of the datacomputer typically involves the -
interaction of two programs at opposite ends of a
communication network with a finite time delay, steps must I
be taken to ensure that the programs remain in synchrony
with each other. If they do not, the user program might
blithely go on sending datalanguage when toe datacomputer
expects data or might receive diagnostic messages when It
expects a list of directory node names.

To avoid such problems, the datacomputer generates a
variety of messages that keep the user program informed of
what is going on. The messages fall into several
categories: there are error messages, which will be
discussed in a later section; informational messages, which
can safely be Ignored or merely logged by a user program;
and synchronization messages, some of which at least must he
processed by the user program to ensure proper
communication. The first character of the message differs
from category to category, allowing the user program easily
to differentiate the various classes of message.

-4

Chapter b: Using the Datacomputer Page 145

Prefix Type of Message

?, -, or + error message
Informational message
synchronization message

Other special characters may be added as datacomputer
message-prefix characters in future versions. The letters,
digits, tab, and space will never be used as message
prefixes, however.

The datacomputer's messages all follow a common format,
which includes the special header character just descrihed,

a letter and three digits that a program can use to Identify
the message, the date and time of the message's
transmission, and a variable-length string of text that can
be read by a human user. Specifically, the format Is:

.X999 dd-mm-yy hhmm:ss (TAB) TEXT STRING (CR, LF)

where . represents the header character, X999 represents
the message identifier (for example, 1210), dd-mrm-yy
represents the day, month, and year (for example, 25-09-73),
hhmm:ss represents the time on a 24-hour clock in hours,
minutes, and seconds, (TAB) represents a tab character, and
(CR, LF) represents the carriage return, line feed
characters that terminate the message. All alphabetic
characters in the message are ce italized. Note that the
message may be very long (too long to print on a 72-column
printer, for instance), so a user program that processes
datacomputer messages may have to format them to be
readable.

In this manual, only the Invariant parts of messages
will be displayed; that Is, the header character, the
identifying letter and digits, and the message text.

To Illustrate the use of synchronization messages in
pacing Interaction with the datacomputer, consider these
two:

.1210 LAGC: READING NEW DL BUFFER

.J900 FCFINI: END OF SESSION

The first message, .1210, is sent by the datacomputer over
the datalanguage output socket, and hopefully received by
the user program over an input socket, whenever the
datacomputer Is ready to accept datalanguage requests. The
user program will in general respond to this message by
transmitting a JinJ of datalanguage. A line is some number
of characters (currently there is an upper limit of about
2500) terminated by either the character sequence carriage

Chapter 6: Using the Datacomputer Page 46

return, line feed (ASCII codes 15, 12 octal) or the single
character eol (37 octal). On a line may be one datalanguage
request (terminated by a semicolon), several reqijests (each
terminated by a semicolon), or a portion of a request.

In the first two cases, when the datacomputer receives
the requests (and if they contain no errors) it will proceed
to execute them, (typically generating messages and/or
initiating data transfers as it does). Following execution,
it will again send the .1210 message signifying that it is
again ready to receive datalanguage. In the third case, the
datacomputer will continue to send .1210 messages, prompting
the user program for lines of datalanguage, until a complete
request has been assembled; the request will then be
executed as described above. -.4

The second message, .J900, is sent by the datacomputer
at the end of a session. The user program may request that
the session end by sending the datacomputer a control-Z
(ASCII code 32 octal) in response to a .1210 message. The
datacomputer responds to control-Z by executing an end of
session procedure, which involves closing any open
containers, deleting TEMP PORTs, and sending the .J900
message. The user program may then close tts network
connections with the datacomputer.

Synchronization after an error is discussed in the
section entitled Error Messages below.

Tran.it.L Data through thbe Dfalalangug Por ts j
Often, a user program will need to send data over the

network to be stored at the datacomputer, or to process data
that it receives from the datacomputer. If all of the data
is described as ASCII, then this may be done by using the
datalanguage input or output port.

To reference data that he or she will transmit through
the datalanguage input socket, the user need only open a
PORT and use it on the right-hand side of an assignment In
datalanguage. When the assignment is executed, data will be
accepted through the datalanguage input port and assigned to
whatever container appears on the left side of the request.

Similarly, to output data through the datalanguage
output socket so that it can be picked up by the user
program, all that is needed In datalanguage Is a PORT used
on the left-hand side of an assignment. Any data assigned
to that container will be transmitted out through the
datalanguage output port over the network.

dr 11W

Chapter 6: Using the Datacomputer Page 47

Of course, performing this feat requires the use of
more synchronization messages. To treat the data-input case
first:

.1231 OCPBO: (DEFAULT) INPUT PORT OPENED

.1251 OCPBC: (DEFAULT) INPUT PORT CLOSED

After the user program has sent the datalanguage assignment
request that references the open Input PORT, the
datacomputer will transmit the .1231 message over the
datalanguage output port. The message signals that Input
data is now expected through the datalanguage input port,
and the user program should send the data. Data
transmission is terminated by a control-Z character, which
causes the datacomputer to send the .1251 message confirming
that data transmission is finished. The next
synchronization message will he .1210, a request for more
datalanguage.

The synchronization procedure governing data output
through the datalanguage output port is similar. The
messages are

.1241 OCSOP: (DEFAULT) OUTPUT PORT OPENED

.1261 OCSCL: (DEFAULT) OUTPUT PORT CLOSED

Whtn the assignment statement is executed which requests
that data be output through the datalanguage port, the
datacomputer first sends .1241, followed by the requested
data. followed in turn by .1261. The datacomputer does not
output a control-Z at the end of the data. The user program
can use these messages to separate out the data from all
other information.

OpniLng A Spoidr .EgL

Instead of a datalanguage port, an additional network
connection or secondary port can be used for transmitting
data. Non-ASCII data, including an ASCII STR with a
preceding count or a non-ASCII delimiter, must he
transmitted over a secondary port. The CONNECT request sets
up the secondary port.

The CONNECT request names an open PORT, and gives a
host (that Is, a computer on the network) and socket number
to which that PORT is to refer. As mentioned above, if a
CONNECT request is never executed for a PORT, it will refer
to the socket from which the user program transmits
datalanguage (if It is a READ PORT) or the socket at which
the user program receives the datacomputer's messages (a
WRITE or APPEND PORT). The form of the CONNECT request is

VI,.-, _ _ __ _ _ __ _ _ _

Chapter 6: Using the Datacomputer Page 48

CONNECT <pathname> TO (address> ;

where <pathname> is the node name, comlete name (i.e.
starting with %top) or simple login name (I.e. starting
Immediately subordinate to the login node) of an open PORT,
and (address> can have several forms. It can be one of

<socket-no> the decimal number of a socket at the
user's host computer.

<host-no> <socket-no> where <host-no> is the decimal
number of a computer on the ARPA network

'<host-name>' <socket-no> where <host-name> Is the host
computer's TENEX alphabetic name

<host-name> <socket-no> where <host-name> is the host
computer's TENEX alphabetic name
(such as 'CCA')

OR '<local-file-designator>' This last form of <address>
does not refer to the network, but is
Included here for completeness.
<local-file-designator> is a TENEX
file designator that refers to a file
at the datacomputer site.

A CONNECT may be executed any time the PORT is open,
but it does not actually establish the network connection.
Those connections are established, used, and then closed
again during the execution of an assignment statement In
datalanguage, and CONNECT merely sets up the socket address
to be used when the PORT is later referenced In an
assignment.

A DISCONNECT request may be used to cause a CONNECTed
PORT to refer once again to the datalanguage input or output
port.

DISCONNECT <pathname> ;

Two CONNECT requests may be Issued for the same PORT without
an intervening DISCONNECT.

Additional synchronization messages are generated at
the time a CONNECTed PORT Is used in an assignment
statement. These messages are

.1230 OCPBO: OPENING INPUT PORT
;1239 OCPBO: INPUT PORT OPENED
.1250 OCP8C: CLOSING INPUT SOCKET
.1240 OCPOO: OPENING OUTPUT PORT

{ II•

Chapter 6: Using the Datacomputer Page 49

;1249 OCPOO: OUTPUT PORT OPENED
.1260 OCPOC: CLOSING OUTPUT SOCKET

When a CONNECTed PORT Is used on the right-hand side of an
assignment (that is, In READ mode), the .1230 message is
sent over the datalanguage output port. This signals the
user program that the datacomputer Is attempting to open a
network connection to the host and socket specified by the
CONNECT request for the PORT. The user progrom should thus
open its end of the connection itself (if it is a connection
to a different socket on the user program's own host) or
ensure that the third host opens its end of the connection
at this time (if it is a connection to another host on the
network).

The ;i239 message indicates that indeed the network
connection was opened correctly. After this message is
received, data can be transmitted, terminated by closing the
network connection. Once the connection is closed, the
datacomputer sends .1250 over the datalanguare output port,
signaling the user program that use of the secondary network
connection is complete. The .1250 may precede or follow the
closing of the connection on the user's side.

The messages for output PORTs work similarly, with
.1240 signaling that the output network connection is being
opened, ;1249 that the connection is opened, and .1260 that
output is complete and the connection is being closed.

If there are errors in the data, other messages will be
sent before the .1250 or .1260 message. This would he the
case, for example, if the data does not match the
description.

A user program can interrupt the datacomputer's
transmission of data; see Appendix D for details.

The form CONNECT <pathname> TO <local-file-designator>;
may be useful to those with large amounts of data to send to
the datacomputer. In some cases, the shipment of magnetic
tapes by air-freight produces higher bit rates than sending
the data over the network; the magnetic tape may then be
addressed from datalanguage as a local file. Contact CCA
for information on this procedure.

Errr. osas

Datacomputer error messages will in general be seen by
a human user, although they have header characters which
make them potentially processable by a smart user program.
Error messages fall into several categories, distinguished

lip_ _ ii
'per!!=~

Chapter 6: Using the Datacomputer Page 50

by their first character.

First Character Meaning

? Indicates a datacomputer or
system bug. A user program
should rarely see one of these.

Examples:
?UOOO TRDN: NODE CHAIN SNAFU
?UOOO DKWR: DISK I/O WRITE ERROR

indicates a user error --

typically bad datalanguage, data,
or i/o handling. A debugged user
program should rarely see one of
these.

Examples:
-UOOO LPNM: FORARG NOT DIRECT LIST MEMBER
-1246 OCSOP: CAN'T OPEN OUTPUT PORT (BAD CONNECT ARGS?)

+ indicates a circumstantial error,
such as a file's being busy, or
an error which Is due to current
datacomputer limitations.

Examples: +UOOO OCDOP: CAN'T OPEN FILE (SOMEBODY ELSE UPDATING?
+LOOO DHIN: DESCRIPTOR TOO LARGE

After the datacomputer generates one or more error
message, It follows a special procedure to resynchronize
itself with the user. This procedure Involves waiting for a
special character, control-L or form feed (ASCII 14 octal),
to be transmitted by the user. That is, after the error
message the datacomputer sends

.1220 LAEB: LOOKING FOR CONTROL-L

This is repeated for each line of input it receives on the
datalanguage Input port until the user sends a control-L
character. Following receipt of a control-L, .1210 will
again be sent and datalanguage requests again processed.

More severe action must be taken following certain
system or ?-type errors. One of the following
synchronization messages may be generated:

- -- u =1-_ _ _ _ _
L

Chapter 6: Using the Datacomputer Page 51

.J151 FCERRH: RESTARTING THE REQUEST HANDLER

.J140 FCREIN: REINITIALIZING USER JOB
oJ910 FCERRH: CRASHING JOB

The .J151 message indicates that TEMP PORTs have been
deleted; otherwise, the status of the session remains the
same (PORTs and FILEs will still be open, etc.). This
message will usually be followed by .1220, a request for
control-L.

The .J140 message is more serious. The user's job is
completely reinitialized, leaving his status the same as
when the session was begun. This message will also be
followed by .1220.

The .J910 message indicates a condition so severe that
the datacomputer does not know how to recover. The user's
job is crashed and the datalanguage network connections
closed. That is, the session is forcibly ended.

If this happens, and also if the user's network
connections to the datacomputer are accidentally broken, the
datacomputer will do its best to close his open PORTs and
FILEs in an orderly manner. However, if the user was In the

of transmitting data into a FILE, the last fewprocess o rnmtigdt noaFL, tels e
thousand characters of data his program sent may have been
lost in transit and not incorporated into the FILE.

Not much in general can be said about handling ? or -

errors, except that a human user will have to read and
interpret the text of the error message In each case, and
(in the case of - errors) correct the datalanguage he Is
having his program send.

+ errors, on the other hand, could be processed by a
user program. The most reasonable thing to do In many cases
is to wait five minutes and retry the datalanguage request 4
that caused the error. For example, a FILE which was busy
(i.e. In use by someone else) may be free by that time, so
the second attempt to use it may be successful.

Messages beginning with +L are an exception to this, in
that the appropriate time to wait may be several weeks
instead of minutes. Such messages indicate limitations of
the current datacomputer system, such as limitations Imposed
by internal table sizes. A new version of the datacomputer
may remove many of these limitat.ons. Realistically, this
means that +L messages are like - messages in that a program
probably could not handle them.

I .:. :z =_ o. ,.. . :. ., ,,-w .fml --. T . _ -- : -. ., ._ ' - -

,..-,-.- ..

Page 52

Appendix A: Summary of Datalanguage Syntax

The following is the complete BNF (Backus Normal Form)
specification of datalanguage syntax for version 0/10 of the
datacomputer.

Requests

<request>

Directory Requests

<request> ::= LOGIN (login body>
<request> ::= CREATE <create body> ;
<request> DELETE <delete body> ;
<request> ::= OPEN <open body> ;
<request> :: CLOSE <close body>
<request> :: CONNECT <connect body> ;
<request> ::= DISCONNECT <disconnect body> ;
<request> :: MODE <mode body> ;
<request> ::= CREATEP <createp body> ;
<request> ::= DELETEP <deletep body> ;
<request> ::= LIST <list body> ;

Data Transfer Requests

<request> ::= <direct assignment> ;
<request> :: < for loop> ;

Appendix A: Summary of Datalanguage Syntax Page 53

Directory

Pathnames

<pathname> ::= <complete pathname>
<pathname> ::= <simple complete pathname)
<pathname> ::= <login pathname>
<pathname> :: < simple login pathname>
<pathname> :: < (open node name>

<node name> ::= <identifier>
<node name> ::= <Identifier> (<password string>)

<password string> ::= <string constant>
<simple node name> ::= <identifier>

<complete pathname> :: % TOP . <node name>

<complete pathname> ::
<complete pathname> . <node name>

<simple complete pathname> :=
%TOP . <simple node name>

<simple complete pathname> :=
<simple complete pathname> . <simple node name>

<login pathname> :: < node name>
<login pathname> :: <login pathname> . <node name>

<simple login pathname> : = <simple node name>
<simple login pathname> ::

<simple login pathname> . <simple node name>

<open node name> := <simple node name>

<node pathname> ::- <complete pathname>

<node pathname> ::= <login pathname>

<open pathname> :: <simple complete pathname>

<open pathname> ::- <simple login pathname>
<open pathname> :: < open node name>

L

Appendix A: Summary of Datalanguage Syntax Page 54

Directory

Requests

<login body> ::= %TOP
<login body> := <node pathname>

<create body> ::= <simple node name>
<create body> ::=

<node pathname> . <simple node name>
<create body> ::= <data description>
<create body> ::=

<node pathname> . <data description>

<delete body> ::= **
<delete body> ::= <login pathname>
<delete body> ::= <login pathname> . **

<open body> ::= <node pathname>
<open body> ::= <node pathname> <mode>

<close body> ::= %OPEN
<close body> ::= <open pathname>

<connect body> ::=
<open pathname> <tenex file specification>

<connect body> ::=
<open pathname> <network specification>

<tenex file specification> ::= <string constant>
<network specification> ::- <socket number>
<network specification> ::=

<host specification> <socket number>
<socket number> ::= <integer constant>
<host specification> := <integer constant>
<host specification> :: <identifier>
<host specification> ::* <string corstant>

<disconnect body> ::= <open pathname>

<mode body> ::- <open pathname> <mode>
<mode> ::m READ
<mode> ::= WRITE
<mode> ::= APPEND
<mode> ::= WRITE DEFER
<mode> ::= APPEND DEFER

I
r- -_ _ _ _ _ _ _ __ _ _ _ _ _ _ _

Appendix A: Summary of Datalanguage Syntax Page 55

<createp body> :: < (node pathname>
<createp body> ::=

<node pathname> <privilege tuple specification>
<privilege tuple specification> ::

<privilege tuple option>
<privilege tuple specification> ::=

<privilege tuple specification>
<privilege tuple option>

<privilege tuple option> :: U a <user Identity>
<privilege tuple option> :: , H = <host Identity>
<privilege tuple option> :: , S - <socket identity>
<privilege tuple option> ::n P - <password string>
<privilege tuple option> ::-

G = <grant privilege list>
<privilege tuple option> ::

D - <deny privilege list>
,privilege tuple option> ::

N - <privilege tuple index>
<user identity> ::= **
<user identity> :: <user node>
<user identity> ::= <user node set>
<user identity> ::= <user node> . **
<user identity> ::= <user node set> * **

<user Identity> ::
<user node> * <user node set> **

<user node> ::= <identifier>
<user node> <user node> . <identifier>
<user node set> ::= *
<user node set> : <user node set> * *
<host identity> ::= ANY
<host identity> ::= LOCAL
<host identity> ::= <Integer constant>
<socket identity> ::- ANY
<socket identity> ::* <Integer constant>
<grant privilege list> ::= <grant privilege>
<grant privilege lst>=

<grant privilege istgrant privilege>
<grant privilege> listC
<grant privilege> L:- L
<grant privilege> ::= R
<grant privilege> ::= W
<grant privilege> :- A
<deny privilege list> :: <deny privilege>
<deny privilege list> =

<deny privilege list><deny privilege>
<deny privilege> :: R
<deny privilege> ::= W
<deny privilege> ::- A
<privilege tuple index> ::- <Integer constant>

<deletep body> ::-
<node pathname> <privilege tuple Index>

Appendix A: Summary of Datalanguage Syntax Page 56

(list body> :: <ist node set>
<list body> :: <ist node set> (list option>
(list node set> % TOP
<list node set> :: %OPEN
(list node set> ::a*
(list node set> ::a*
(list node set> ::- <open node name>
(list node set> ::a (node pathname>
(list node set> ::a (node pathname> .*
(list node set> <: node pathname> . *

(list option> % NAME
(list option> : %DESCRIPTION
(list option> :: %DESC
(list option> % SOURCE
(list option> % ALLOCATION
(list option> :: %ALLOC
(list option> % PRIVILEGE
(list option> :=%PRIV

Appendix A: Summary of Datalanguage Syntax Page 57

Data Description

(datatype> ::x <compound datatype>
(datatype> <: simple datatype>
(datatype> <: string>4, (compound datatype> :uLIST

(compound datatype> <: structure>
<structure> :L STRtUCTUIRE
<structure> :=STRUCT

(simple datatype> :uBYTE

(simple datatype> :: <nteger>
(Integer> : INTEGER

<integer> I: NT

(string> < string type>I
(string> <: string type> <string Interpretation>
<string type> :=STRING
<String type> :=STR
<string interpretation> ;-ASCII

(string Interpretation> ASCIIS
<string Interpretation> :: BYTE

<strig Inerpreatio> IN

<string Interpretation> I NTER

(strng iterpetaton> :~ ITEGE

Appendix A: Summary of Datalanguage Syntax Page 58

<data description> ::

<simple node name> <function>
<outermost description>

<function> ::, FILE
<function> ::- PORT

<function> :- TEMPORARY PORT

<function> ::- TEMP PORT
<outermost description> ::= LIST <description>

<outermost description> ::u

LIST <compound datatype options> <description>
A

<outermost description> :: < string>

<outermost description> = (string> <string options>

<outermost description> ,:= <description>

<description> :

LIST <dimension> <description>
<description> :

LIST <dimension> <compound datatype options>

<description>
<srt>description>

<structure> <descriptions> END

<description> :=
<structure> <compound datatype options>

<descriptions> END

<description> := BYTE
<description> :: BYTE <simple datatype options>

<description> :: <integer>
<description> :: < (integer> <simple datatype options>

<description> :: < string> <dimension>

<description> ::-
<string> <dimension> <string options>

<descriptions> :: < (description>

<descriptions> <: (descriptions> <description>

I _

Appendix A: Summary of Datalanguage Syntax Page 59

<description option> ::a <Inversion option>
<description option> :: O <byte size option>
<description option> :'- <filler option>
<description option> ::m <variable length option>
<inversion option> ::* , I n 0
<inversion option> : I I
(byte size option> :- , B - <integer constant>
<filler option> := , F - <Integer constant>
<filler option> ::- , F = '<nonquote character>'
<variable length option> ::= , C - 1
<variable length option> ::= , P - EOF
(variable length option> ::= , P a EOB
<variable length option> ::= , P a EOR
<variable length option> ::= a P * <integer constant>
<variable length option> =

D - '<nonquote character>'

<compound datatype options> ::
<compound datatype option>

<compound datatype options>
<compound datatype options> :

<compound datatype option>
<compound datatype option) <byte size option>
<compound datatype option> ::- <byller option>

<compound datatype option> ::
<variable length option>

<simple datatype options> =
<simple datatype option>

<simple datatype options> ::=
<simple datatype options>

<simple datatype option>
<simple datatype option> ::- <Inversion option>
<simple datatype option> : <* (byte size option>
<simple datatype option> ::* <filler option>

<string options> <:: (string option>
<string options> <string options> <string option>
<string option> :: O (inversion option>
<string option> ::- <byte size option>
<string option> ::- <filler option>
<string option) := <variable length option>

<dimension> :: (<Integer constant>)
<dimension> ::- (, <Integer constant>)
<dimension> ::a

(<Integer constant> <Integer constant>)

t

. .. .V

Appendix A: Summary of Datalanguage Syntax Page 60

Data Transfer

<data reference> ::= <Identifier>

<data reference> ::= <data reference> . <identifier>
<constant> <:= (string constant>
<constant> ::= <Integer constant>
<assignment> ::= <data reference> a <data reference>
<assignment> ::* <data reference> a <constant>

<direct assignment> ::= <assignment>
<direct assignment> := <Implicit for loop>
<implicit for loop> ::= <assignment> <qualifier>

<for loop> FOR <Input> <for body> END
<for loop> := FOR <nput> <qualifier> <for body> END
<for loop> := FOR <output> , <input> <for body> END .

<for loop> :=
FOR <output> , <input> <qualifier> <for body> END

<input> <data reference>
<output> := <data reference>
<for body> <for loop>
<for body> := <for loop>
<for body> := <assignment list>
<for body> <assignment list>
<assignment list> <assignment>
<assignment list> n

<assignment list> ; <assignment>

<qualifier> ::= WITH <boolean expression>

<boolean expression> ::x <relational expression>
<boolean expression> <boolean expression>)
<boolean expression> :: NOT <boolean expression>
<boolean expression> ::* ANY <boolean expression>
<boolean expression> ::x

<boolean expression> AND <boolean expression>
<boolean expression> ::=

<boolean expression> OR <boolean expression>

<relational expression> :==
<data reference> <comparison operator>

<data reference>
<relational expression> ::=

<data reference> <comparison operator> <constant>
<comparison operator> ::* EQ
<comparison operator> ::= NE
<comparison operator> ::= GT
<comparison operator> ::a GE
<comparison operator> ::w LT
<comparison operator> ::= LE

4

• ,1.-
L

4 .!

Appendix A: Summary of Datalanguage Syntax Page 61

Lexical Items

<lexical item> ::= (identifier>
<lexical Item> ::= <integer constant>
<lexical item> <string constant>
<lexical item> ::= <autonomous character>

<Identifier> ::* <letter>
<identifier> ::=%
<identifier> ::= <identifier> <letter>
<Identifier> ::- <identifier> %
<identifier> ::= <identifier> (digit>

<Integer constant> ::= <digit>
<integer constant> := <integer constant> <digit>

<string constant> ::= '<string constant body>'
<string constant body> ::= <nonquote character>
<string constant body> :=

<string constant body> <nonquote character>

! I

_77

I Appendix A: Summary of Datalanguagp Syntax Page 62

Character Set

<letter> ::=
<letter> B:= Z

<letter> :: a
<letter> ::= b

< letter> ::c b

<digit> ::=0
<digit> :: 1

(digit> : 9

<nonquote character> ::= <letter>
<nonquote character> ::= %'.
<nonquote character> : <= (digit>
<nonquote character> ::= <autonomous character)
<nonquote character> ::= (space)
<nonquote character> ::= (horizontal tab -- HT)
<nonquote character> ::= "'

<nonquote character> ::=

<separator> :: (space)
<separator> ::= (horizontal tab -- HT)
<separator> ::= <eol>
<eol> ::= (end of line -- octal 37)
<eol> :: <carriage return> <line feed>
<carriage return> ::a (carriage return -- CR)
(line feed> := (line feed -- LF)

,w WIND,

ApDendix A: Summary of Datalanguage Syntax Page 63

<autonomous character> ::<autonomous character> : #= I
<autonomous character> ::= $<autonomous character> := &<autonomous character> ::u (
<autonomous character> :z-)(autonomous character> :: .<autonomous character> ::- *<autonomous character> ::<autonomous character> ::= .
<autonomous character> =<autonomous character> z:= /
(3utonomous character> ::= :<autonomous character> ::= ;
<autonomous character> ::a <<autonomous character> :== =(autonomous character> ::a ><autonomous character> := ?<autonomous character> :: @<autonomous character> :: "B<autonomous character> ::= -/<autonomous character> :: "E<autonomous character> ::= "!
<autonomous character> ::=<autonomous character> :=w<autonomous character> ::= "6
<autonomous character> I<autonomous character> ::= "9<autonomous character> =

I

Appendix A: Summary of Datalanguage Syntax Page 64 V

Notes

Character codes are 7 bit ASCII. II,

Separators are always permitted between lexical Items,

except between grant privileges, between deny

privileges, and Inside string constants.

Comments may be Inserted wherever separators are

allowed. Comments begin with '/*' and end with ,'/'

(e.g., /* THIS IS A COMMENT */).

<carriage return> and (line feed> may only appear

together In that order (as an <eol>). Otherwise they

are treated as control characters, which are rejected.

"Y""

A 1

Page 65

Appendix B: Reserved Words

AND
ANY
ASCII
ASCI 18
B YTE
CLOSE
CONNECT
CREATE
CR EATE P
DELETE
DELETEP
DISCONNECT
END
EQ

FI LE
FOR
GE
GT
I NT
INTEGER
LE
LI ST
LOG IN
LT
MODE
NE
NOT
OPEN
OR
PORT
S TR
STRING
STRU CT
STRUCTURE
WITH
%OPEN
%TOP

A A

..

Page 66

Appendix C: Inversion: Technical Considerations

An inversion is a secondary data structure that
the datacomputer can use to improve Its efficiency in
retrieving data by content from a datalanguage FILE.
Specifically, an entry In the inversion Is constructed
for every STR with the Inversion attribute. For each
data value which occurs for the STR, the Inversion
contains pointers to all the records In the FILE for
which that STR contains that value.

For example, if

CREATE PEOPLE FILE LIST
PERSON STRUCT f

NAME STR (15)
SOCSECNO STR(9),I1D
SEX STR (1) /* 'MI OR 'F'*/,I=D
ZIP STR(5),I=D

END;

then the data structure for the inversion on SEX
contains pointers to all Instances of PERSONs with SEX
equal to IF', and similarly for M'. Thus, evaluation
of a simple FOR input-spec like

FOR *.. , PEOPLE.PERSON WITH SEX EQ 'M'

would be quick and simple, and would require only a
read of the inversion, not any reading of the FILE
PEOPLE Itself.

An inversion is not only constructed automatically
by the datacomputer when the FILE is loaded with data,
but is automatically maintained (updated) whenever
information in the FILE Is updated.

Unfortunately, even if an inversion for the
appropriate STR exists, the datacomputer cannot always
use it for the evaluation of input-specs, and must
sometimes resort to time-consuming searches of the
FILE. In particular, the Inversion can be used only
when the STR is compared with a constant usint tbh
operatonr. That Is,

- - - -- - - - - - - -

Appendix C: Inversion: Technical Considerations Page 67

PEOPLE.PERSON WITH ZIP EQ '02138' OR ZIP EQ

'02139'

'02141' OR ZIP EQ 02140' OR ZIP EQ

can be evaluated directly from the inversion. However,

PEOPLE.PERSON WITH ZIP GE '02138'
AND ZIP LE '02141'

while it still can be evaluated, cannot take advantage
of the inversion and so would be much less efficient
datalanguage.

Furthermore, when the STR is a member of an Inner
LIST, only the oehrator EQ can be evaluated using the
inversion. A sequential search Is used for evaluating
NE.

Complex Boolean expressions, those involving
several comparisons, fall into three classes: those
with all comparisons evaluable from the Inversion,
those containing no comparisons evaluable from the
inversion, and those which mix the two kinds of
comparisons. The first two classes pose no problem;
the datacomputer will use the Inversion to evaluate
expressions in the first category, and not for
expressions in the second category.

For mixed expressions, the datacomputer will use
the inversion as much as it can. For the present, this
can be stated as follows: if the Boolean expression is
of the form

<expr> AND <expr> AND

(where <expr> is an arbitrary Boolean expression, in
parentheses if it contains OR) then the datacomputer
will separate the <expr>s into those that can be
completely evaluated from the inversion and those that
cannot, and will process those that can use the
inversion first. The <expr>s that cannot use the
inversion are evaluated by an exhaustive search of the
set of records selected by the earlier <expr>s.

For an example, take the above FILE, PEOPLE.
Suppose a list of all males with ZIP GT '02000' were
desired. ZIP Is Indeed Inverted, but since the
operator GT is involved, the evaluation of that part of
the Boolean expression cannot use the Inversion. As a
result, In i

4

Appendix C: Inversion: Technical Considerations Page 68

FOR ... , PEOPLE.PERSON WITH ZIP GT 1020006
AND SEX EQ 'M'

the datacomputer will first use the Inversion to find
the set of all PERSONs with SEX EQ IM', and only this
smaller set of PERSONs would be searched for the L,
desired ZIPs.

A more difficult example: consider the prohlem of
retrieving all the records for events that occurred
between 10:05 on the 25th and 15:07 of the 30th from a
FILE that is Inverted on DAY but not on TIME. A
straightforward way to do this is

WITH (DAY EQ '25' AND TIME GT '10:05')
OR (DAY EQ '26') OR (DAY EQ '27') OR

OR (DAY EQ '30' AND TIME LT '15:07')

but this is quite inefficient: the inversion cannot be
used at all, for this Boolean expression is mixed and
is not set up as a series of terms connected by AND.
The best way to express this condition Is

WITH (DAY EQ '25' OR DAY EQ '26' OR ... OR
DAY EQ '30')

AND (DAY NE '25' OR TIME GT '10:05')
AND (DAY NE '30' OR TIME LT '15:07')

In this case, only records for the correct six days are
retrieved by the first term, so only they need to be
searched through for the evaluation of the second and 4
third terms.

Future versions of the datacomputer will
automatically optimize mixed Boolean expressions,
freeing the user from this task.

The computation of the space requirements for an
inversion Is best left to the datacomputer's
operational staff at CCA, who should be contacted by
any user Interested In setting up a data file with an
Inversion.

. .
- _ ,

Page 69

Appendix D: Network Interaction with the Datacomputer

The procedure for establishing network connections
with the datacomputer is that documented In J. Postel,
Official J.lne± = : ag a niia.l nne.tLLn Protocol,
NIC 7103, 15 June 1971. The following Is a simplified,
informal description of that procedure.

The datacomputer listens for connections on a
well-advertised socket, currently number 103 (octal) at
CCA, host number 37 (octal). This is an odd-numbered
or send socket. The user program wishing to use the
datacomputer will address this socket from a socket on
his own host computer -- say from socket number U. U
must, of course, be an even number or a receive socket.
The user program should read one 32-bit byte of
information over this connection and then immediately
close it (leaving socket CCA-103 free for other users).
This byte of Information is a socket number at the
datacomputer -- say socket D. D will he an even
number.

The last step is the opening of two network

connections, the permanent datalanguage connections.
They are

from D+1 at CCA to U+2 at the user host
and from U+3 at the user host to D at CCA.

Note that U+2 is even (since U is) and D+1 is odd --

this is the datalanguage output socket. Also, U+3 Is
odd, and D Is even: the datalanguage Input socket.
These connections will remain In effect until the end
of the datalanguage session.

The byte size of the permanent datalanguage
connections is 8 bits. The datacomputer sends, and
expects to receive, 7-bit ASCII characters
right-justified in 8-bit bytes.

Two special network control signals, INS and INR,
may be used to Interrupt the datacomputer. INS, for
Jnterrupt the lender, may be sent at any time during
the processing of a request and stops data output from

Appendix D: Network Interaction with the DatacomputerPage 70

the current request. No error message or other
acknowledgement will be generated; the output simply
stops. INS might be useful to a program which receives
output from the datacomputer and displays it to a human
operator sitting at a teletype; at the request of the
user, the program could send INS to stop an overly-long
printout.

INR, for Interrupt the Ceceiver, performs all the
functions of INS. In addition, compilation or any
other processing that is under way when INR is received
will be aborted, possibly generating an error message
and a request for control-L. INR thus requests a more
immediate halt than does INS.

'-

"i4

I
I

I.

17 I' _ ____ ___ ___ ____ ___ ___

Page 71

Appendix E: Implementation Restrictions

A number of datalanguage restrictions specific to
Version 0/10 are collected here for ready reference.
Note that some of these restrictions have been
mentioned in the body of this manual, while others have
not.

1. There is a restriction on the containers

that can be referenced in the body of a FOR-loop.
Consider the following example:

CREATE FF FILE LIST
PERSON STRUCT

NAME STR (15)
ADDRESS STR (20)
CITY STR (10)
STATE 0TR (2)
ZIP STR (5)
SOCSECNO STR (10)
DEPENDENTS LIST (10)

NAME STR (15)
END;

CREATE PP PORT LIST
PERSON STRUCT

NAME STR (15)
SOCSECNO STR (15)

END;
To output all the DEPENDENTS.NAMEs from the file FF,
together with the SOCSECNO of the PERSON whose
DEPENDENTS they were,

FOR PP.PERSON,FF.PERSON
NAME=NAME;
SOCSECNO-SOCSECNO;

END;
This example as written will work In datalanguage 0/10.
However, If SOCSECNO occurred after DEPENDENTS in the
description of FF.PERSON, the request would fall due to
a compiler restriction.

When an Inner FOR-loop is processing a LIST which
occurs within a STRUCT, references may he made In the
body of that FOR to objects which occur before that
LIST In the STRUCT, but not after the LIST.

-- -

Appendix E: Implementation Restrictions Page 72

There are certain cases of assignment Involving
inner LISTs which the compiler in Version 0/10 cannot
handle. For example, given two structures of the
following format:

Li FILE LIST
S1 STRUCT

Al STR (8)
A2 LIST (4)

B2 STR (6)
END;

and
L2 PORT LIST

S1 STRUCT
Al STR (8)
A2 LIST (4)

B2 STR (6)
END;

the following FOR-loop will not work:~FOR L1.S1, L2.S2

FOR A2.B2,A2.B2
Si-S1

END
END;

The A2 lists are in use by the inner FOR-loop (FOR
A2.B2,A2.B2) when the assignment S151 is encountered.
The datacomputer expands Si-S1 internally Into;

Ai=Al
FOR L1.S1.A2.B2, L2.S1.A2.B2

B2=82
END;

This constitutes a second use of the A2 lists, which
cannot be handled.

2. In Version 0/10 of datalanguage, there Is one
general restriction on sequences of nested FOR-loops,
which can be stated as follows:

Sequences of ,nested FOR-loops are restricted to be
a number (possibly 0) of FOR-loops without output
LISTs, followed by an arbitrary number, at least 1, of
FOR-loops with output LISTs.

For example,
FOR A FOR A FOR A

FOR B,C FOR B
(ASSIGNMENT)

(ASSIGNMENT) FOR C,D EN;
END; (ASSIGNMENT)

END; END;
END;

END;
The first two examples are legal, whereas the third is
not.

7

Appendix E: Implementation Restrictions Page 73

3. A FOR-loop with no output LIST can contain
only = datalanguage statement as the FOR-body, not a
series of statements. Because of restriction 2, that
one statement must be a FOR.

This does not apply to a FOR with an output LIST.

4. The only comparison operators which can be
evaluated from an inversion are EQ and NE. All other
comparison operators must be evaluated by a linear
search through a set of records. If the container
being compared is a member of an Inner list, only the
EQ comparison operator can be evaluated from an
inversion.

5. It is impossible to assign members of a LIST
without setting up a FOR-loop (either explicitly or
Implicitly). For example, given the PORT Is:

CREATE Li PORT LIST (5)
S1 STR (3);

The following assignment is illegal:
Li.S1='FOO';

because it treats the five members of S1 as if they
were a single data item.

6. Two outermost containers with the same name
may not be open at the same time. This Is true even
though the containers may have different pathnames in
the directory.

7. If an output PORT Is punctuated, all
assignments before each punctuation character must be
completed before any assignments are made after the
punctuation character. That is, the datacomputer
cannot back up over punctuation in an output PORT. For
example, given an output PORT of the form:

PP PORT LIST
S1 STRUCT

Al STR (3),P-EOR
A2 STR (3),P-EOR

END
assignments must be made In the same order as the STRs
appear in the STRUCT.

AI.'FO0';
A2='BAR';

will take effect correctly, but
A2-'BAR';
Al-'FOO;

will not.

Because of the internal paging of the
datacomputer, STRUCTs containing long STRs (i.e.
greater than 2560 ASCII characters) have a similar
restriction, for example, the LIST

Appendix E: Implementation Restrictions Page 71

FF FILE LIST
S1 STRUCT

Al STR (10000)
A2 STR (10000)
A3 STR (10000)

END
may have assignments done only In the same order as
they appear in the STRUCT.

A5

ILi.. . . I i i! i- J U

.. - - - --- mm

Page 75

Appendix F: Differences between 0/9 and 0/10

The following is a list of changes which, when
performed on 0/9 datalanguage, results in the
datalanguage for 0/10. The changes are purely user
specifiable (i.e. syntactic) features.

Additions

Login
The LOGIN request
The login context
The %TOP context

Privileges

The CREATEP request
The DELETEP request
Passwords in pathnames

Simple pathnames (without passwords) for open nodes

Variable length
Data description options -- P, D, C
Dimension -- (min,max)

The datatype BYTE

The implicit FOR loop

The boolean operator ANY

Defer mode -- WRITE DEFER, APPEND DEFER I
New data description options -- I1, B, F

New LIST options -- %ALLOCATION, %PRIVILEGE

. LIST %TOP

LIST*

I

, Appendix F: Differences between 0/9 and 0/10 Page 76

CLOSE %OPEN

String interpretations -- ASCII, ASCII8, BYTE

Synonyms -- STRUCTURE, STRING

I-,
Modifications

tr ** replaces %ALL

Elimination of the . between LIST's nodes and option

%NAME is now an explicit LIST option

DELETE <pathname>.** Is now explicit

i4

IJ

''p

. ... '

W MV... tCAWIMI - RIAOJ1 VA'ICTC2 . NAIU; s T'1uE T '?M

"TO BE STORED IN A COOL DRY LOCATION"

MATE.IAL IISPECTI1A 1. PEOC. INSTRUMENT IDENI.?JNTRACTI (ORDER) NO. 6. IVOICE 7. PAGE OF
MATU~ANOSP1TIT NO.

A '11 DB. ACCEPTANCF PON
RECEIVING REPORT MDA903-74-C-0225 DATE D

2. SHIPMENT NO. 3. DATE SHIPPED 4. I/L 5. DISCOUNT TERMS

CCA00003 9/20/74 TEN

9. PRIME CONTRACTOR COO 6A046 O. ADMINISTERED BY COEI 2202A

Computer Corporation of America Mr. J. McDonough
omputerCororSua reon ofDefense Contract Administration
7 Technology Square Services Region, Boston

Cambridge, Massachusetts 02139 666 Summer Street

Boston, Massachusetts 02210
1. S I PPE D F ROM (itph .th 9) CODEI FOB: 12. PAYMENT WILL BE MADE BY CO EI S2202A

I R f h Disbursing Officer I

Defense Contract Administration
-amp as 9. above Services ReLion, Boston

666 Summer Street
Boston, Massachusetts 02210

13. SHIPPED TO CODEJ W73QQP ,4.MARKED FOR COOEr

Defense Advanced Res~arch Projects Agy.
Architect BuildingS

0 Wilson Boulevard
..tri: Dr. Craig7 F'ields
Arlington, Virginia 22209

15. 1TEM 16. STOCK/PART NO. DESCRIPTION 17. I] 19. 20.
ITOM (Ind te "Sb of 51"r' contol c - type of I S;P/REC'D I UNIT UNIT PRICE AMOUNT

c~t~ r•con~omoe number.) ___________

0)02 ;AB Semi-Annual Technical Report 2 NSP

,I

21 P1 S)UP '.AiNT QOJAI.ITY ASURANCE 22. RECLIVER'S USE

A C 1 tI 6, DESTINATION 0 en , $. homn n coL, 1n 7 .ee r- ,iod ,

0D L CPTA1J:F 'I 1ct.. ""1n I'll P ., .J PA DACEPTANCE I 1,.4 'r I-, b-, -d. Opt,.-1 good -o- -ncorpt . nted.

DATE I:,CLi4LD .I.NATURE Or AUTH UJW II

TYPr NA ,E

_AND O; FIC ECE
DATE SIGNATU 01E O AUTH GOVr REP DATE S1GNAIU"E OF AUTH COVT R.P °

If q ,,t fty e-e,.c d by rho Go ;, , s tI- , -. or I
q.o s. h,pped, .,dcos by I o l , d.-

TYPED NAME TYPED NAME fCCn, enter Oc vol Q~nhty reccod bol. quo.- -- '
A ND OFFICE AND TITLE ,ppd de , 4

23.CONTRACTOR USE ONLY 0%

E I I1

